[28]

SARDAR PATEL UNIVERSITY

B.Sc. SEM-III EXAMINATION (NC)

01st January, 2021, Friday 10.00 a.m. to 12.00 roon US03EMTH05

(Calculus and Algebra-1)

Maximum Marks: 70

	Shoose the correct option in the following questions, mention the correct option in swerbook.	[10]
(1)	Which of the following is not an indeterminate form? (a) ∞^0 (b) $0 \times \infty$ (c) 1^{∞} (d) $\frac{1}{\infty}$	
	If $f = \sin x$ then $f_{xx} = \dots$ (a) $\sin x$ (b) $\cos x$ (c) $-\sin x$ (d) $-\cos x$	
(3)	$z = \frac{x^2y}{x^3 + xy^2}$ is a homogeneous function of degree	
(4)	(a) 0 (b) 1 (c) 2 (d) z is not homogeneous A matrix A is said to be non singular if	
()	$(a)A \neq 0$ (b) $ A = 0$ (c) $ A \neq 0$ (d)none of these	
(5)	If $u = x^2 - y^2$, then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ is (a) 3 (b) 2 (c) 1 (d) 0	
	(a) 3 (b) 2 (c) 1 (d) σ	
(6)	$\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{\frac{1}{x}} $ is the form of	
	(a) 0^{∞} (b) 0^{∞} (c) 1^{∞} (d) $\frac{0}{0}$	
(7)	Principle diagonal entries of Skew-symmetric matrix are all	
	(a) Zero (b) Zero or Pure imaginary (c) Pure imaginary (d) 1	
(8)	If $A = \begin{pmatrix} 4i & i-1 \\ 8i+5 & 7 \end{pmatrix}$, then $\overline{A} = \dots$,
	(a) $\begin{pmatrix} 4i & i-1 \\ 8i+5 & 7 \end{pmatrix}$ (b) $\begin{pmatrix} -4i & -i-1 \\ -8i+5 & 7 \end{pmatrix}$ (c) $\begin{pmatrix} -4i & -i-1 \\ -8i+5 & 7 \end{pmatrix}$ (d) $\begin{pmatrix} 4i & 8i+5 \\ i-1 & 7 \end{pmatrix}$	
	(c) $\begin{pmatrix} -4i & -i+1 \\ -8i-5 & -7 \end{pmatrix}$ (d) $\begin{pmatrix} 4i & 8i+5 \\ i-1 & 7 \end{pmatrix}$	
(9)	Characteristic equation of the identity matrix I of order 2 is	
(4.0)	(a) $x^2 - 1 = 0$ (b) $x^2 + 1 = 0$ (c) $(x+1)^2 = 0$ (d) $(x-1)^2 = 0$	
(10)	A square matrix A is said to be Skew Hermitian if (a) $A' = A$ (b) $A' = -A$ (c) $A^{\theta} = A$ (d) $A^{\theta} = -A$	
0.5	2 Do as directed.	[08]
Vo. • 4	2 DO W WILCONG)	

- (1) True or False: If A and B are any two matrices then AB = BA.
- (2) True or False: If A and B are any two matrices then A + B is always defined.
- (3) True or False: If A and B are any two matrices then always A B = B A.
- (4) True or False: For any matrix A, we have $(A^T)^T = A$.
- (5) True or False: If A and B are any two matrices with same order then always A = B.

- (6) The function $f(x,y) = 3x^{18} + 11x^9y^9 + 125y^{18}$ is a homogenous function of ... degree
- (7) If $u = x^2 + y^2$, then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ is ...
- (8) Is the function $f(x,y) = x^n \log\left(\frac{y}{x}\right)$ is homogenous? : Yes or No. If it is yes then the degree of it is

Q.3 Attempt any Ten.

[20]

- (1) Evaluate: $\lim_{x\to 0} \frac{\log(\sin x)}{\cot x}$. (2) If $A = \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix}$ then find characteristic equation of A.
- (3) Evaluate: $\lim_{x\to a} (a-x) \tan\left(\frac{5\pi x}{2a}\right)$:
- (4) For $u = x^3 3xy^2$ prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

(5) If
$$A = \begin{pmatrix} 3 & -1 & 2 \\ 2 & 0 & 1 \\ 1 & -1 & 4 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 & 3 \\ 6 & 2 & 1 \\ -2 & 3 & 2 \end{pmatrix}$, then obtain $A + B$.

- (6) Define Hermitian matrix with an exam
- (7) For $u = x \sin y + 3xy$, find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$
- (8) If U and V are two symmetric matrices, then show that UVU is also symmetric.
- (9) State Reversal, Associative and Distributive law for product of matrices.
- (10) Find degree of the homogeneous function $z = \frac{x^2 + y^2}{\sqrt{2n}}$.

(11) If
$$A = \begin{pmatrix} 1 & -2 & 5 \\ 0 & 4 & 11 \\ 3 & 1 & 8 \end{pmatrix}$$
 then find $|A'|$.

(12) Evaluate: $\lim_{x\to 2} \frac{\sin x^2 - 4}{x^2}$

Q.4 Attempt any Four.

[32]

(a) Evaluate:
$$\lim_{x \to \infty} \left[\frac{1^{\frac{1}{x}} + 2^{\frac{1}{x}} + 3^{\frac{1}{x}}}{3} \right]^{3x}$$

- (b) Evaluate: $\lim_{x \to 0} \frac{e^x + \log(1 x) 1}{\tan x x}$
- (c) If H = f(2x 3y, 3y 4z, 4z 2x) then prove that $\frac{1}{2} \frac{\partial H}{\partial x} + \frac{1}{3} \frac{\partial H}{\partial y} + \frac{1}{4} \frac{\partial H}{\partial z} = 0$.
- (d) State and prove Euler's theorem for functions of two variables.
- (e) Prove that Every square matrix can be expressed in one and only one way as the sum of a symmetric and skew symmetric matrix.

(f) If
$$A = \begin{pmatrix} -2 & -1 \\ 1 & 0 \\ 3 & -4 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 3 \\ 2 & 0 \\ -4 & -1 \end{pmatrix}$ and $2X + 3A = B$ then find X.

- (h) If $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ then find out the values of α, β such that $(\alpha I + \beta A)^2 = A$.

