[8F]

SARDAR PATEL UNIVERSITY

B.Sc Semester - III (CBCS) Examination

Monday, 4th Jany02/2021 Statistics

Time: 2 to 4 Am

M.Marks:70

		US03CSTA22 (Elements	of Probability Theory)			
Q.1		Questions		(10 × 1)			
1	Given $P(A \cap B)$	$=3/5$ then $P(A^c \cup B^c)$	=	(
	(a) 2/5	= 3/5 then $P(A^c \cup B^c)$ (b) 3/5	(c) 1/5	(d) 1			
2	$P(X<7)=\underline{\hspace{1cm}}$	if the pdf of X is		(, -			
	$f(x) = \begin{cases} \frac{x}{25}, \\ \frac{10 - x}{25}, \\ 0, 00 \end{cases}$	(b) 3/5 if the pdf of X is $0 < x < 5$ $x < 10$ therwise (b) $41/50$ $3t)^{-1}$ then $V(1 + 4X) = 0$		·			
	(a) 31/50	, (b) 41/50	/c\ 91 /50	(d) was a stall			
3	$If M_{\nu}(t) = (1 - $	$(3t)^{-1}$ then $V(1+4X) =$	(0) 91/30	(d) none of these			
	(a) 13	(b) 144	(c) 12	(d) 81			
4	If the two r.v's X	and Y are independent	(0) 12	(u) ox			
		listribution equal to produ	uct of their marginal d	istributions			
	(b) The condit	ional distribution of X giv	en Y equal to margin:	d distribution of Y			
	(c) Their cova	riance is zero	squares margine	a distribution of A			
		bove are correct					
5	Two balls are drawn at random with replacement from a box containing 10 black and 6 red						
	balls. The probabi	ility that first ball is black	and second is red	reaming to piack and 0 lea			
	(a) 64/15	(b) 1/8	(c) 25/64				
6	Two dice are rolle		of getting two number	ers whose product is prime			
	number?		SB	and a product is prime			
	(a) 1/6	(b) 1/12	(c) 3/8	(d) 5/16			
7	If $f(x,y) = (x^2 +$	$(y^2)/112$, x , $y = 0, 1, 2$,	3, is the joint probabi	lity distribution of X and Y			
	then $P(X=2) =$		• •	, we will be a second of the second of			
	(a) 14/112	(b) 18/112	(c) 30/112	(d) None of these			
8	Let X has a p.d.f. f	f(x) = 2(1-x), 0 < x < 0	1 and zero otherw	ise. What is the median?			
	(a) $1/\sqrt{2}$	(b) $1 + (1/\sqrt{2})$	(c) $1 - (1/\sqrt{2})$	$ A \sqrt{2} = 4$			
9	Given that $f(x) =$	$k(1+x)^2 \cdot x = 0.1 \cdot 2 \cdot 3$	and zero otherwise	e. What will be the value			
	of k so that given	f(x) being p.m.f?		e. What will be the value			
	(a) 2/30		(c) 3/30	(d) 4/30			
10	Let X be a r.v. with	probability distribution	, , ,	(-) 2/00			
		1, 2, and zero other	wisethen probability	that X is odd			
	(a) 1/4	(b) 1/2	(c) 3/4	(d) 1/8			
			•				

 (4×1) Fill in the blanks Q.2 Let X and Y be two random variables with joint pdf f(x,y) = c(2x + y), 0 < x < 1, 0 < y < 2 and zero otherwise, then c =If X and Y are two independent r.v's with V(X)=5 and V(Y)=10 then 2 V(2X+Y)=Let a r.v. X denote the waiting time of a passenger at a railway station then X is a 3 __ type of r.v. If A and B are two mutually exclusive and exhaustive events with P(A)=2P(B) then 4 (4×1) True - False The probability of occurrence of at least one of two events is the sum of the probability of S each of the two events. If X and Y are two independent r.v's then they are uncorrelated. 6 The m.g.f of sum of two random variables is the product of their m.g.f's. 7 If A and B are two events then $P(A \cap B^c) = P(B) - P(A \cap B)$ 8 (10×2) Short Type Questions (Attempt Any Ten) Q.3 Define moment generating function. State its properties. Examine whether the following is a p.m.f. or not? P(x) = 1/(2x), $x = 1, 2, \dots$, and zero otherwise Examine whether $f(x,y) = 6x^2y$, 0 < (x,y) < 1 and zero otherwise, is joint pdf of 3 X and Y or not. An urn contains 7 white and 3 red balls. Two balls are drawn at random, without replacement from this urn, find the probability distribution of X where $X=\mathsf{no.}$ of red balls State and prove additive law of probability for two events. 5 If X and Y are two independent r.v's then show that V(X+Y)=V(X-Y)The joint pdf of two r.v's X and Y is 7 $f(x,y) = c(x^2 + y^2)$, 0 < (x,y) < 1 and zero otherwise. Determine the constant c. If $f(x) = 3x^2$, 0 < x < 1 and zero otherwise, is the pdf of X. Find Inter Quartile Range. 8 Prove that the complementary events of two independent events are also independent. 9 If f(x) = 1/4, -2 < x < 2 and zero oterwise, is the pdf of X. Show that all the odd 10 order moments are zero. If V(X+Y) = 3, V(X-Y) = 1, E(X) = 1, E(Y) = 2 then find E(XY). 11 If X and Y have the joint pdf $f(x,y) = \frac{3}{4} + xy$, 0 < (x,y) < 1 and zero otherwise 12 Find the conditional distribution of Y given X = x. (4×8) Long Answer Questions (Attempt Any Four) Q.4 A continuous random variable X in the range $\left(-3,3\right)$ is given by the pdf

(a)

$$f(x) = \begin{cases} \frac{1}{16} (3+x)^2, -3 \le x < -1\\ \frac{1}{16} (6-2x^2), -1 \le x \le 1\\ \frac{1}{16} (3-x)^2, 1 \le x \le 3 \end{cases}$$

- (i) Verify that the area under the curve is unity (ii) Find the distribution function of X (iii) E(2X) (iv) P(1/2 < X < 2),
- (b) (i) The coefficient of correlation between X and Y is 1/3, V(X) = K, V(Y) = 4K and V(Z) = 114, Where Z = 3X 4Y. Find the constant K.
 - (ii) Let X and Y have the joint prob. mass function f(x,y) = k(x+y), x = 1,2,3; y = 1,2 and zero otherwise
 - (a) Determine the value of k (b) the conditional distribution of Y given X (c) P(X+Y>3)
- (c) (i) Let A and B be two events such that P(A) = P(B) = 1/2 and $P(A^c \cap B^c) = 1/3$ then find probability of exactly one of two event occurs.
 - (ii) If P(A) = 0.25 and P(B) = 0.8 then show that $0.05 \le P(A \cap B) \le 0.25$
- (d) Following are the compositions of two basket flowers:

Basket - I	Basket - II		
Pink - 5	Pink - 4		
White – 3	White – 5		
Yellow - 2	Yellow – 4		

One basket is chosen at random and two flowers drawn from it they happen to be white and yellow. What is the probability that they come from basket - I, II?

(e) (i) Let X be a r.v. with the following probability distribution:

	х	0	1	2	3	4	5	6
·	P(x)	1/20	P1	1/5	P2	Р3	1/10	1/10

If E(X) = 3.1, $E(X^2) = 12.1$, find P1, P2 and P3.

- (ii) There are 5 cards numbered 1 to 5, one number on one card. Two cards are drawn at random without replacement. Let X denotes the sum of the numbers on two cards drawn. Find the mean and variance of X.
- (f) The probability distribution of a r.v. X is given below:

х	1	2	3	4	5	6	7	8
P(x)	k	k	3k	2k	$k^2 + k$	$2k^2$	$4k^2 + k$	3 <i>k</i> ²

Find (i) k (ii) the c.d.f. of X (iii) the minimum value of k so that $P(X \le k) = 1/2$ (iv) $P(2 \le X < 7)$ (v) P(X > 3).

(g) The joint p.d.f. of X and Y be

 $f(x,y) = k(x^2 + y^2), 0 < x < 1, 0 < y < 1$ and zero otherwise,

- (i) Find the value of k (ii) the correlation coefficient between X and Y.
- (h) (i) Two independent r.v's are uncorrelated but converse is not always true. Justify your answer by giving counter example.
 - (ii)The moment generating function of X is $M_X(t) = (4-3e^t)^{-1}$, find the mean and variance of X.

.