Seat No.: .

## SARDAR PATEL UNIVERSITY

No. of pages: 03

# B.Sc. (III-Semester) EXAMINATION 2021(NC)

Thursday, 07<sup>th</sup>January

10:00am-12:00pm

#### **US03CMTH 02-Mathematics**

### NUMERICAL ANALYSIS

Total Marks: 70

Note: Figures to the right indicates full marks of question.

[10] Q: 1 Answer the following by selecting the correct answer from the given options:

1. In usual notation the formula  $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$  is used in ----- method.

a. False position b. Bi-section c. Iteration

2. For the function  $f(x) = x^3 - x - 4 = 0$  the root of an equation lies between -

c.(2,3)b. (-1,0)

3. If f(a) and f(b) are opposite in signs then the graph of y=f(x) must intersect ----- in at least one point.

b. line y=-x c. Y-axis d. x-axis a. line y=x

4. In Back- difference  $\nabla^2 y_2 = ---$ 

b.  $y_2 + 2y_1 + y_0$  c.  $y_2 - 2y_1 + y_0$ a.  $\nabla y_2 - \nabla y_1$ 

5. What is a linear polynomial which takes the values y(0)=1 and y(1)=0 -----?

a. 1-x b.1+x c.2-x

ъ. -15

7. The Lagrange's interpolation formula is applicable for ----- arguments.

d. Negative b. Un Equi-spaced c. Positive a. Equi-spaced

8. Taking mean of Gauss's Forward and Gauss's Back-ward one can obtain -----

a. Stirling's Formula b. Bessel's Formula c. Everett's Formula d. None

9. Trapezoidal rule is obtain from -----

a. Simpson's 1/3 rule b. Simpson's 3/8 rule c. Gauss formula d. General formula for Integration.

d. -5

10. For  $\int_0^6 \frac{dx}{1+x}$  in Simpson's 1/3 rule with 4 strips, then h=-----

d. 2 c.0.5b. 1 a. 1.5

- (1) cosx + 2 = 3x is know as ----equation.
- (3) True or False: For Forward and Backward difference  $\Delta y_4 = \nabla y_5$ .
- (4) True or False: For the relation  $y_{n+4} = E^{-2}y_{n-2}$ .
- (5) True or False: Divided differences are symmetric of their arguments.
- (6) True or False: Newton's Forward formula for Equi-space of argument is a general case of Newton's divided difference formula.
- (7)  $y^{(n)} = y_0 + \int_{x_0}^x f(x, y^{(n-1)}) dx$  is known as ----- formula.
- (8) By putting n=---- in the General formula for integration, we get Simpson's 3/8 rule.

### Q: 3 Answer in brief of the following questions. (Any Ten)

[20]

- 1. If  $x_1 = 1.5$ ,  $x_2 = 1.535369$ ,  $x_3 = 1.515710$ ,  $\Delta x_1 = 0.035369$ ,  $\Delta x_2 = -0.019659$ , then find  $x_4$  by using Aitkin's  $\Delta^2$  process.
- 2. Find first approximation of a root of  $x^3 + 8x 7 = 0$  using Bi-section method.
- 3. Derive the formula to obtain  $\sqrt{N}$  by using N-R method.
- 4. In central difference interpolation formula, when the difference table ends with odd difference then which is the suitable formula? What is a range of u?
- 5. Without preparing difference table find  $\Delta^4 y_0$  where  $y_0=1, y_1=11, y_2=21, y_3=28, y_4=29$
- 6. In usual notation prove that  $\Delta \nabla = \Delta \nabla$
- 7. Construct divide difference table from the given data:

| х | 1  | 3 | 4  | 6   |
|---|----|---|----|-----|
| У | -3 | 9 | 30 | 132 |

in the contract of the contract of the garden of the

8. Using Lagrange's interpolation formula, find f(9) for the data:

| х | 2  | 4  | 7  |
|---|----|----|----|
| у | 10 | 26 | 65 |

9. Obtain the value of first approximation in method of Successive approximation.

Paragraphy (1997)

- 10. State second order Runge-Kutta formula.
- 11. By using Trapezodial rule, evaluate  $\int_0^2 f(x) dx$ , where f(0) = 4, f(1) = 30, f(2) = 19 taking n=2
- 12. Given that  $\frac{dy}{dx} = x + y^2$ , using Euler modified method, obtain  $y_1^{(1)}$  taking  $y_1^{(0)} = 1.1$  and h=0.1

# Q: 4 Attempt any Four of the following:

- (1) Discuss the Aitken's  $\Delta^2$  process for approximation of a real root of an equation.
- (2) Find a real root of an equation  $\cos x = 3x 1$  by Iteration method correct up to three decimal places.
- (3) Derive Newton's backward difference interpolation formula for equally spaced values arguments.
- (4) By using Gauss's backward interpolation formula find cubic polynomial f(x), given that f(1)=-1, f(2)=11, f(3)=35, f(4)=77, f(5)=143. Hence find f(0).
- (5) Obtain Newton's divided difference formula for un-equi spaced values of arguments.
- (6) The following table of x and y is given find  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$  when x=1.

| х | 1      | 1.2     | 1.4      | 1.6    | 1.8      | 2        | 2.2    |
|---|--------|---------|----------|--------|----------|----------|--------|
| У | 2.7183 | 3.32.01 | 4.0552   | 4.9530 | 6.0496   | 7.3891   | 9.0250 |
|   |        |         | <u> </u> |        | <u> </u> | <u> </u> |        |

- (7) Derive Simpson's  $\frac{3}{8}$  rule for Numerical Integration.
- (8) Use Picard's method to approximate y when x=0.1 given that y(0) = 1 and  $\frac{dy}{dx} = \frac{y-x}{y+x}$  correct up to three decimal places.



 $\cdot \vec{I}$