SARDAR PATEL UNIVERSITY

B.Sc. (III SEM.) (CBCS) EXAMINATION

2013
Wednesday, $2^{\text {nd }}$ January
2.30 pm to 4.30 pm

US03EMTH05 : Calculus and Algebra-I
Total Marks: 70
Note: Figures to the right indicate full marks of the questions.
Q. 1 Answer the following questions by selecting the most appropriate option. Write down the option in your answer book.
(1) $\lim _{x \rightarrow 1}\left(4-4 x^{2}\right)^{\frac{1}{\log (2-2 x)}}$ is of the form \qquad .
(a) 1^{∞}
(b) ∞^{0}
(c) $\infty-\infty$
(d) $\mathbf{0}^{\mathbf{0}}$
(2) $\lim _{x \rightarrow 1}(a-x) \tan \left(\frac{5 \pi x}{2 a}\right)=$ \qquad .
(a) 1
(b) $\frac{5 \pi}{2 a}$
(c) $\frac{2 a}{5 \pi}$
(d) 0
(3) $\lim _{x \rightarrow 2} \frac{\sin \left(x^{2}-4\right)}{(x-2)}=$ \qquad .
(a) 2
(b) 4
(c) 1
(d) 0
(4) Let $z=f(x, y)$ be a real valued function defined on $E \subset R^{2}$. Suppose that f is homogeneous function of degree n. If f_{x} and f_{y} exists on E, then $x \cdot \frac{\partial y}{\partial x}+y \cdot \frac{\partial x}{\partial y}=$ \qquad -.
(a) $\boldsymbol{n}(\boldsymbol{n}-1) \boldsymbol{z}$
(b) $n \cdot \frac{\phi(u)}{\phi^{\prime}(u)}$
(c) $n \boldsymbol{n}$
(d) $(n-1) z$
(5) $f(x, y)=x^{2} y^{4}-x^{3} y^{3}+x y^{5}$ is homogeneous with degree $\mathrm{n}=$ \qquad -
(a) 6
(b) 4
(c) 3
(d) 5
(6) A matrix is said to be skew-Hermitian if \qquad .
(a) $\mathbf{A}^{\mathrm{H}}=-\mathbf{A}$
(b) $\mathbf{A}^{\mathbf{T}}=\mathbf{A}$
(c) $\mathbf{A}^{\mathrm{H}}=\mathbf{A}$
(d) $\quad \mathbf{A}^{\mathbf{T}}=-\mathbf{A}$
(7) The transpose of a matrix A is denoted by \qquad .
(a) \mathbf{A}^{*}
(b) $\overline{\mathbf{A}}$
(c) $\mathbf{A}^{\mathbf{T}}$
(d) \mathbf{A}^{-1}
(8) A column matrix has only one \qquad -
(a) row
(b) column
(c) 1
(d) 0
(9) $(\mathbf{A B})^{T}=$ \qquad .
(a) $A B$
(b) $\mathbf{A}^{T} \mathbf{B}^{T}$
(c) $B^{T} A^{T}$
(d) -AB
(10)

If $A=\left[\begin{array}{cc}\mathbf{2} & \mathbf{3} \\ -\mathbf{1} & \mathbf{4}\end{array}\right]$ then $|A|=$
(a) 11
(b) 5
(c) -11
(d) -5
Q. 2 Write down the answers of ANY TEN questions in short.
(1) Evaluate $\lim _{x \rightarrow \mathbf{0}} \frac{\sin x-x+x^{3}}{x^{3}}$
(2) Evaluate $\lim _{x \rightarrow \mathbf{0}} \frac{x-\sin x}{\tan ^{3} x}$
(3) Evaluate $\lim _{x \rightarrow 0} \frac{e^{x}+\sin x-1}{\log (1+x)}$
(4) Check whether the function $\boldsymbol{u}=\frac{x^{4}-x y^{3}}{x^{3}+y^{3}}$ is homogeneous or not. If yes, find its degree.
(5) If $\boldsymbol{u}=\boldsymbol{e}^{a y} \boldsymbol{\operatorname { c o s } a x}$ then prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\mathbf{0}$
(6) For $\boldsymbol{u}=\boldsymbol{x}^{3}-3 x \boldsymbol{y}^{2}$, prove that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$
(7) If $\mathbf{A}=\left[\begin{array}{cc}2+5 \mathbf{i} & 7 \mathbf{i} \\ -3 & 1-\mathbf{i}\end{array}\right]$ then find $\mathrm{A}+\mathrm{A}^{\mathrm{H}}$
(8) Show that $A-A^{\top}$ is skew-symmertric.
(9) Define: Scalar Matrix with at least two illustrations.
(10) If $\mathbf{A}=\left[\begin{array}{ll}1 & 3 \\ 5 & 2\end{array}\right]$ then find characteristic equation for A .
(11) State distributive law for matrices.
(12) Define: Characteristic Matrix.
Q. 3
(a) Find a, b, c so that $\lim _{x \rightarrow \mathbf{0}} \frac{a e^{x}-2 b \cos x+3 c e^{-x}}{x \sin x}=2$
(b) Evaluate $\lim _{x \rightarrow 0} \frac{\log \left(\log \left(41-3 x^{2}\right)\right)}{\log (\log (\cos 2 x))}$
Q. 3
(a) Evaluate $\lim _{x \rightarrow \mathbf{0}}\left(\frac{1}{x^{2}}-\boldsymbol{\operatorname { c o t }}^{2} \boldsymbol{x}\right)$
(b) Evaluate $\lim _{x \rightarrow \mathbf{0}}\left(\frac{\tan x}{x}\right)^{\frac{5}{3 x^{2}}}$
Q. 4
(a) Verify Euler's Theorem for $z=x^{n} \boldsymbol{\operatorname { l o g }}\left(\frac{x}{y}\right)$
(b) If $\boldsymbol{u}=\sin ^{-1}\left(\frac{x^{2} y^{2}}{x+y}\right)$, then prove that $x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}=3 \tan u$
Q. 4
(a) Find $x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}$ and $x^{2} \cdot \frac{\partial^{2} u}{\partial x^{2}}+2 x y \cdot \frac{\partial^{2} u}{\partial x d y}+\boldsymbol{y}^{2} \frac{\partial^{2} u}{\partial y^{2}}$ for $\boldsymbol{u}=\frac{x^{2} y+x y^{2}}{x^{2}+y^{2}}$
(b) If $\boldsymbol{u}=\left(\boldsymbol{x}^{2}+\boldsymbol{y}^{2}+z^{2}\right)^{-\frac{1}{2}}$ then prove that $\boldsymbol{x} \cdot \frac{\partial u}{\partial x}+\boldsymbol{y} \cdot \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=-\boldsymbol{u}$
Q. 5
(a) Show that for $\mathrm{K} \in \mathrm{R}$,
[05]
(i) $\mathrm{K}\left(\mathrm{A}+\mathrm{A}^{\mathrm{H}}\right)$ is Hermitian.
(ii) $\mathrm{K}\left(\mathrm{A}-\mathbf{A}^{\mathrm{H}}\right)$ is skew-Hermitian.
(b) Define: Column Matrix, Unit Matrix, Skew-symmetric Matrix with [05] illustration.

OR

Q. 5
(a) Show that every square matrix can be expressed as the sum of symmetric and skew-symmetric matrices.
(b) Define: Row Matrix, Zero Matrix, Symmetric Matrix with illustration.
Q. 6 Verify Reversal law for

$$
A=\left[\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right], B=\left[\begin{array}{cc}
4 & 2 \\
1 & -3
\end{array}\right]
$$

Q. 6 Verify Distributive law for
OR

$$
A=\left[\begin{array}{ll}
5 & 1 \\
2 & 4
\end{array}\right], B=\left[\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right], C=\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right]
$$

