No. of printed pages: 03 SARDAR PATEL UNIVERSITY BSc. (III SEM.) (CBCS) EXAMINATION Monday, 26th November 2012 10.30 am - 1.30 pm US03CMTH01 : Mathematics (Advanced Calculus)

Total Marks: 70

Note: Figures to the right indicate full marks.

- Q.1 Answer the following questions by selecting the most appropriate [10] option. Write down the option in your answerbook.
 - (1) If $\bar{r}(t) = a\cos t i + b\sin t j$; where a, b are constant, then \bar{r} represents

(a) Helix
(b) Parabola
(c) Circle
(d) Ellipse
(2)
$$\int_{0}^{1} \int_{x}^{2x} dy dx =$$
______.
(a) -3
(b) 3
(c) 1/2
(c) 1/2
(c) -1
(c) -1
(c) -1
(c) -1
(c) -1
(c) -1
(c) $\pi^{2}a$
(c) $\frac{1}{2}\int_{c}r^{2}d\theta$
(c) $\int_{c}rd\theta$
(c) $\int_{c}rd\theta$
(c) $\int_{c}rd\theta$
(c) $\int_{c}rd\theta$
(c) $\int_{c}rd\theta$
(c) $\int_{c}rd\theta$
(c) $\frac{1}{2}\int_{c}rd\theta$
(c) \frac

[30]

- (9) If f is harmonic function, then _____.
 (a) ∇f = 0
 (b) ∇²f = 0
 (c) ∇²f = 0
 (d) ∇f = 0
 (10) The unit normal vector to the surface f(x,y,z) = 0 denoted by _____.
- (10) The unit normal vector to the sufface I(x,y,z) = 0 denoted by _____. (a) n (b) N (c) \vec{n} (d) \vec{N}
- Q.2 Write down any answer of **Any Ten** questions from the following in [20] short.
 - (1) Evaluate $\int_{0}^{\frac{n}{2}} \int_{0}^{1} x^2 y^2 dx dy$.
 - (2) Discuss the work done by force.
 - (3) Write down the formula for moment of inertia about x-axis, y-axis and origin.

(4) Check whether the line integral $\int_{(2,0,0)}^{(1,2,3)} (xdx + ydy + zdz)$ is independent of

path or not.

- (5) State Green's theorem for plane.
- (6) When a line integral is said to be independent of path?
- (7) Describe area of surface $\bar{r}(u, v)$
- (8) Evaluate $\iint_{S} [(x+z)dydz + (y+z)dzdx + (x+y)dxdy]$ where S: $x^2+y^2+z^2 = 1$.
- (9) Write down the parametric form of a surface.
- (10) State first form of Green's theorem.

(11) In usual notations prove that,
$$\iint_{R} \nabla^{2} f \, dv = \iint_{S} \frac{\partial f}{\partial n} \, dA \, .$$

(12) State second form of Green's theorem.

Q.3

- (a) Evaluate $\int_{C} 2xy^2 ds$ where C is a circle $x^2+y^2 = 1$ in xy-plane from a point [05] (1,0) to (0,1).
- (b) Find the volume of the region bounded by the cylinder $x^2+y^2 = 4$ & [05] y+z = 4, z=0.

OR

Q.3

- (a) Transform $\int_{R} \int (x^2 + y^2) dx dy$ in uv plane by taking x+y=u, x-y=v. [05] Then evaluate it, where R: parallelogram with vertices (0,0), (1,1), (2,0) (1,-1).
- (b) Find volume of the region bounded by the first octant section cut from [05] the region inside the cylinder $x^2+y^2 = 1$ and by the planes y=0, z=0, x=y.

Q.4

- State and prove Green's theorem in vector form. (a)
- [05] (b) Find the area of the region in the first quadrant bounded by y=x, $y+x^3$. [05]

OR

Q.4

- (a) State and prove Green's theorem for plane. [05] [05]
- (b) Find the area of the region R: $r=a(1+\cos\theta)$.

Q.5

(a) State and prove the first fundamental form of a surface in Cartesian [05] form.

(b) Evaluate
$$\int_{s} \int (2z(xy - x - y)dxdy + x^2 dydz + y^2 dzdx)$$
. [05]

OR

Q.5

- (a) [05] Evaluate $\int \int f(x, y, z) dA$ where $f(x, y, z) = \tan^{-1}(\frac{y}{r})$
- S: $z = x^2+y^2$, $1 \le z \le 4$, $x \ge 0$, $y \ge 0$. (b) By using divergence theorem, [05] evaluate $\int \int (x^3 dy dz + x^2 y dz dx + x^2 z dx dy)$ where S is closed surface bounded by the plane z=0, z=b, $x^2+y^2 = a^2$.
- Q.6 State and prove Stoke's theorem. [10] OR Q.6
- Verify Stoke's theorem for $\overline{v} = y^3 \overline{i} x^3 \overline{j}$ and surface S: the circular disk $x^{2}+y^{2}\leq 1$, z=0.
