Complete Comment

o, of Printed F) o management in the same of	
agar	Vallabh Vidyan aminations: 2018-19	el University	Sardar Pate
arks: 70	ITH05 Max. M		B.Sc. So Subject : Mathemat
- 01.00 pm	Timing: 10.00 am	<u>-</u>	Date: 03/04/2019, Wee
s specified.	we their usual meaning, unless	ls used in the paper	Instruction: The symbol
ces.	ect answers from given cho	wing by choosing co	2: 1. Answer the follow
able. They ch meeting.	day for meeting at a round has different neighbors at each	ı that every membe	decide to sit such
[D] 20	[C] 18	can this arrangeme [B] 10	How many days of [A] 9
h 7 vertices	simple connected graph wit	number of edges in	[2] The maximum m
[D] 28	[C] 21	[B] 14	is [A] 7
[D] path	called ted vertex [C] circuit		[3] If degree of a ver [A] a pendent ver
[D] none	raph removes corresponding vertices and edges both	edge deletion on a [B] vertices	[4] An operation of a [A] edge only
[D] none	erses through [C] All vertices and edges	Path in a graph tra [B] All edges	[5] A Hamiltonian F [A] All vertices
[D] none	and 6 edges is [C] an Euler graph	aph with 7 vertices [B] a circuit	[6] A conneceted gra [A] a tree
anning tree. [D] none	to the number of in a sp [C] chords	ected graph is equa [B] branch	[7] Rank of a conne [A] all vertices
s edges is [D] 14	y is 5 then the number of i [C] 9	trix is 9 and its nul [B] 5	[8] If rank of a mat: [A] 4
ectively then $ r_1 = -r_2 $	rphic graphs G_1 and G_2 responded [C] $r_1 = r_2$	ranks of two 1-ison [B] $r_1 > r_2$	[9] If r_1 and r_2 are r [A] $r_1 < r_2$
es [D] 10	es and 10 edges has fac	r graph with 7 vert [B] 7	[10] A simple planar [A] 5

Page 1 of 3

(ii) Walk

[2] Define : (i) Edge disjoint subgraphs (ii) Open walk

[1] Define: (i) Length of path

- [3] Discuss Konigsberg bridge problem
- [4] Define Euler Line and Euler Graph with an example.
- [5] Define Complete graph with an example.
- [6] Is graph of Königsberg bridge problem an Euler graph? Justify
- [7] Define Spanning Tree, Branch and Chord with an example.
- [8] Prove that the vertex connectivity of any graph G can never exceed the edge connectivity of G.
- [9] Describe network flows
- [10] Kurtowski's Second graphs
- [11] For a simple connected planar graph with n-vertices, e-edges (e > 2) and f-regions prove the following.
 - f-regions prove the following. (i) $e \geqslant \frac{3}{2}f$ (ii) $e \leqslant 3n-6$
- [12] Prove that a necessary condition for a graph G to be a planar graph is that G does not contain either of a Kuratowski's two graphs or any graph homeomorphic to either of them.
- Q: 3 [A] Discuss (i) Utilities problem (ii) Seating problem
 - [B] Explain Isomorphism between two graphs and examine whether following pairs of graphs are isomorphic or not.

4

5

5

5

6

OR

- Q: 3 [A] Prove that a graph G is disconnected *iff* its vertex set V can be partitioned into two non-empty disjoint subsets V_1 and V_2 such that there exists no edge in G whose one end vertex is in subset V_1 and other in subset V_2
 - [B] If a graph (connected or disconnected) has exactly two vertices of odd degree then prove that there must be a path joining these two vertices.
- **Q:** 4 [A] Prove that every connected graph *G* is an Euler graph *iff* it can be decomposed into circuits.

Page 2 of 3

[B] Prove that there is one and only one path between every pair of vertices in a 5 tree. OR Q: 4 [A] Prove that a graph G with n-vertices and n-1 edges and no circuits is 5 connected. 5 [B] Prove that a graph is a tree iff it is minimally connected. 5 Q: 5 [A] Describe a method to find all spanning tree of a graph. [B] Prove that every cut-set in a connected graph G must contain at least one 5 branch of every spanning tree. OR. Q: 5 [A] Prove that with respect to a given spanning tree T , a chord c_i that determines fundamental circuit τ , occurs in every fundamental cut-sets associated with 5 the branches in τ and in no other cut-sets. [B] Prove that a vertex v in a connected graph G is a cut-vertex iff there exist two vertices x and y in G such that every path between x and y passes through 5 Q: 6 [A] Define Circuit correspondence and prove that 2-isomorphic graphs have 5 circuit correspondence. [B] Using Euler's theorem prove that Kuratowski's first and second graphs are 5 non-planar. OR Q: 6 [A] Give an example to show that dual of dual of a graph may not be isomorphic to the original graph. [B] Define Geometric dual and find geometric dual of the following graph Ś

