[82/A-16]

	ct: Mathematics US06CMTH03 Topology	Timing: 10.00 am - 01.00 pm
44	29/03/2019, Friday	Timing: 10.00 am - 01.00 pm
nstruc	tion: The symbols used in the paper have their	usual meaning, unless specified.
	Answer the following by choosing correct answ	wers from given choices.
[1] I	In $(\mathcal{R}, \mathcal{U})$, the set $[a, b] - \{\frac{a+b}{2}\}$ is [A] Open [B] Closed [C] Open as well closed	d [D] neither open nor closed
[2]] [In a topological space (X, \mathcal{T}) , a neighbourhood [A] \mathcal{T} -open [B] \mathcal{T} -closed [C] either	od of a point is open or closed [D] none
•	In indiscrete topology for a non-empty set X every subset of X is [A] open only [B] closed only [C] open	
	In (R, \mathcal{U}) , the set $\{1, 2, 3, 4\}$ has cluster $[A]$ no $[B]$ one	point/s. [C] two [D] four
	In $(\mathcal{R}, \mathcal{U})$ which of the following is not dense [A] \mathcal{R} [B] \mathcal{Q} [C]	\mathcal{J}^{+} [D] $\mathcal{R} - \mathcal{Q}$
	In $(\mathcal{R}, \mathcal{U})$ which of the following is not closed [A] \emptyset [B] \mathcal{R} [C]	l] (1,2) [D] [1,2]
	In its relativised topology, the subset \dots of A [A] [0,5) [B] [0,4] - {1} [C]	R is connected. $(0,1) \cup (1,2)$ [D] none
[8]	[]	of R posseses the l.u.b. in R none
[9]	If every open cover of a topological space has [A] Compact [B] Unbounded [C]	a Regular Space [D] none
[10]	If (X,T) is a T_2 space and $a \in X$ then $\{a\}$ is $[A]$ open $[B]$ closed $[C]$ closed and open bo	is oth [D] neither open not closed

[2] What are trivial topologies on a non-empty set?

(PTO)

[If $X = \{a, b, c\}$ then find three topologies \mathcal{T}_1 , \mathcal{T}_2 and \mathcal{T}_3 for X such that $\mathcal{T}_1 \subsetneq \mathcal{T}_2 \subsetneq \mathcal{T}_3$	
[4]	Find U -closures of the sets $\mathbb R$ and \emptyset .	
	[5]	Let (X, \mathcal{T}) be a topological space. Prove that if F is \mathcal{T} -closed subset of X and $p \in (X \sim F)$ then there is a \mathcal{T} -neighbourhood N of p such that $N \cap F = \emptyset$	
[[6]	For any topologies \mathcal{T} and Ψ of \mathbb{R} show that the mapping $f: \mathbb{R} \to \mathbb{R}$ where $f(x) = 2, \forall x \in \mathbb{R}$, is \mathcal{T} - Ψ continuous	
[For $X = \{0, 1, 2, 3, 4, 5\}$ consider the topology $\mathcal{T} = \{X, \emptyset, \{0, 1, 2\}, \{3, 4, 5\}\}$. Is (X, T) connected?	
{	[8]	Prove that indiscrete space is connected	
. [[9]	Let $f:[0,1]\to R$ be continuous on $[0,1]$ and be onto R also. Is $f([0,1])$ connected?	
[1	0]	Prove that the space (R, \mathcal{U}) is a T_2 -space.	
[1	.1]	Give an example of a T_1 -space that is not a T_2 -space	
[1	[2]	Define : (i) Regular Space (ii) Bounded Mapping	
Q: 3 [A .]	Define Closed Set. Also if (X, \mathcal{T}) is a topological space and $\{F_{\alpha} / \alpha \in \Lambda\}$ is any collection of \mathcal{T} -closed subsets of X then prove that $\bigcap \{F_{\alpha} / \alpha \in \Lambda\}$ is a \mathcal{T} -closed set	5
[B]	Consider the topology $\mathcal G$ on $\mathbb R$ where $G \subset \mathbb R$ is $\mathcal G$ -open if $G = \emptyset$ or $G \neq \emptyset$ and for each $p \in G$ there is a set $H = \{x \in \mathbb R/a \leqslant x < b\}$ for some $a < b$ such that $p \in H \subset G$. Prove that $\mathcal G$ is finer than usual topology of $\mathbb R$	5
		OR	
Q: 3 [A]	Let (X, \mathcal{T}) be a topological space and let A be a subset of X . Prove that A is \mathcal{T} -open set iff A contains a \mathcal{T} -neighbourhood of each of its points	5
	[B]	Let J be the set of all integers and $\mathcal J$ be a collection of subsets G of J where $G\in\mathcal J$ whenever $G=\emptyset$ or $G\neq\emptyset$ and $p,p\pm2,p\pm4,,p\pm2n,$ belong to G whenever $p\in G$. Prove that $\mathcal J$ is a topology for J	5

Q: 4 [A] Let (X, \mathcal{T}) be a topological space and let A be a subset of X. Then prove that $A^- = A \cup A'$.

[B] Let (X, \mathcal{T}) be a topological space and let A be a subset of X and A' be the set of all cluster points of A. Prove that A is \mathcal{T} -closed iff $A' \subset A$

5

 $\mathbf{5}$

OR

Q: 4.	If (X,\mathcal{T}) and (Y,Ψ) are topological spaces and f is a mapping from X into Y then prove that the following statements are equivalent (a) The mapping f is continuous (b) The inverse image of f of every Ψ -closed set is \mathcal{T} -closed set (c) If $x \in X$ then inverse image of every Ψ -neighbourhood of $f(x)$ is a \mathcal{T} -neighbourhood of x (d) If $x \in X$ and X is a Y -neighbourhood of $f(x)$, then there is a \mathcal{T} -neighbourhood $f(x)$ of $f(x)$ such that $f(x) \in X$ for $f(x) \in X$ then $f(x) \in X$ for $f(x) \in$	10
Q: 5.	Define a connected space and prove that the space (R, \mathcal{U}) is connected.	10
	OR	
Q: 5 [A	Prove that if (X, \mathcal{T}) is disconnected then there is a nonempty proper subset of X that is both \mathcal{T} -open and \mathcal{T} -closed.	5
[B	If (X, \mathcal{T}) is compact and Y is a \mathcal{T} -closed subset of X, then prove that (Y, \mathcal{T}_Y) is also compact.	5
Q: 6 [A	If $Y \subset R$ and the space (Y, \mathcal{U}_Y) is compact, then prove that Y is bounded and \mathcal{U} -closed.	5
[E	B] Let (X, \mathcal{T}) and (Y, ψ) be topological spaces, and let f be a $\mathcal{T} - \psi$ continuous mapping of X onto Y . If (X, \mathcal{T}) is compact then prove that (Y, ψ) is also compact.	5
	OR	
Q: 6 [A	A] Prove that every compact Hausdorff space is a T_3 -space.	5
	3] If (X, \mathcal{T}) is a compact space, and if (Y, ψ) is a Hausdorff space, and if f is a one-to-one $\mathcal{T} - \psi$ continuous mapping of X onto Y , then prove that f is a homeomorphism.	5

• . .