[82/A-16] | | ct: Mathematics US06CMTH03 Topology | Timing: 10.00 am - 01.00 pm | |------------|--|---| | 44 | 29/03/2019, Friday | Timing: 10.00 am - 01.00 pm | | nstruc | tion: The symbols used in the paper have their | usual meaning, unless specified. | | | Answer the following by choosing correct answ | wers from given choices. | | [1] I | In $(\mathcal{R}, \mathcal{U})$, the set $[a, b] - \{\frac{a+b}{2}\}$ is [A] Open [B] Closed [C] Open as well closed | d [D] neither open nor closed | | [2]]
[| In a topological space (X, \mathcal{T}) , a neighbourhood [A] \mathcal{T} -open [B] \mathcal{T} -closed [C] either | od of a point is open or closed [D] none | | • | In indiscrete topology for a non-empty set X every subset of X is [A] open only [B] closed only [C] open | | | | In (R, \mathcal{U}) , the set $\{1, 2, 3, 4\}$ has cluster $[A]$ no $[B]$ one | point/s. [C] two [D] four | | | In $(\mathcal{R}, \mathcal{U})$ which of the following is not dense [A] \mathcal{R} [B] \mathcal{Q} [C] | \mathcal{J}^{+} [D] $\mathcal{R} - \mathcal{Q}$ | | | In $(\mathcal{R}, \mathcal{U})$ which of the following is not closed [A] \emptyset [B] \mathcal{R} [C] | l
] (1,2) [D] [1,2] | | | In its relativised topology, the subset \dots of A [A] [0,5) [B] [0,4] - {1} [C] | R is connected. $(0,1) \cup (1,2)$ [D] none | | [8] | [] | of R posseses the l.u.b. in R none | | [9] | If every open cover of a topological space has [A] Compact [B] Unbounded [C] | a Regular Space [D] none | | [10] | If (X,T) is a T_2 space and $a \in X$ then $\{a\}$ is $[A]$ open $[B]$ closed $[C]$ closed and open bo | is
oth [D] neither open not closed | | | | | [2] What are trivial topologies on a non-empty set? (PTO) | [| | If $X = \{a, b, c\}$ then find three topologies \mathcal{T}_1 , \mathcal{T}_2 and \mathcal{T}_3 for X such that $\mathcal{T}_1 \subsetneq \mathcal{T}_2 \subsetneq \mathcal{T}_3$ | | |--------|-------------|---|---| | [| 4] | Find U -closures of the sets $\mathbb R$ and \emptyset . | | | | [5] | Let (X, \mathcal{T}) be a topological space. Prove that if F is \mathcal{T} -closed subset of X and $p \in (X \sim F)$ then there is a \mathcal{T} -neighbourhood N of p such that $N \cap F = \emptyset$ | | | [| [6] | For any topologies \mathcal{T} and Ψ of \mathbb{R} show that the mapping $f: \mathbb{R} \to \mathbb{R}$ where $f(x) = 2, \forall x \in \mathbb{R}$, is \mathcal{T} - Ψ continuous | | | [| | For $X = \{0, 1, 2, 3, 4, 5\}$ consider the topology $\mathcal{T} = \{X, \emptyset, \{0, 1, 2\}, \{3, 4, 5\}\}$.
Is (X, T) connected? | | | { | [8] | Prove that indiscrete space is connected | | | . [| [9] | Let $f:[0,1]\to R$ be continuous on $[0,1]$ and be onto R also. Is $f([0,1])$ connected? | | | [1 | 0] | Prove that the space (R, \mathcal{U}) is a T_2 -space. | | | [1 | .1] | Give an example of a T_1 -space that is not a T_2 -space | | | [1 | [2] | Define : (i) Regular Space (ii) Bounded Mapping | | | Q: 3 [| A .] | Define Closed Set. Also if (X, \mathcal{T}) is a topological space and $\{F_{\alpha} / \alpha \in \Lambda\}$ is any collection of \mathcal{T} -closed subsets of X then prove that $\bigcap \{F_{\alpha} / \alpha \in \Lambda\}$ is a \mathcal{T} -closed set | 5 | | [| B] | Consider the topology $\mathcal G$ on $\mathbb R$ where $G \subset \mathbb R$ is $\mathcal G$ -open if $G = \emptyset$ or $G \neq \emptyset$ and for each $p \in G$ there is a set $H = \{x \in \mathbb R/a \leqslant x < b\}$ for some $a < b$ such that $p \in H \subset G$. Prove that $\mathcal G$ is finer than usual topology of $\mathbb R$ | 5 | | | | OR | | | Q: 3 [| A] | Let (X, \mathcal{T}) be a topological space and let A be a subset of X . Prove that A is \mathcal{T} -open set iff A contains a \mathcal{T} -neighbourhood of each of its points | 5 | | | [B] | Let J be the set of all integers and $\mathcal J$ be a collection of subsets G of J where $G\in\mathcal J$ whenever $G=\emptyset$ or $G\neq\emptyset$ and $p,p\pm2,p\pm4,,p\pm2n,$ belong to G whenever $p\in G$. Prove that $\mathcal J$ is a topology for J | 5 | | | | | | **Q:** 4 [A] Let (X, \mathcal{T}) be a topological space and let A be a subset of X. Then prove that $A^- = A \cup A'$. [B] Let (X, \mathcal{T}) be a topological space and let A be a subset of X and A' be the set of all cluster points of A. Prove that A is \mathcal{T} -closed iff $A' \subset A$ 5 $\mathbf{5}$ OR | Q: 4. | If (X,\mathcal{T}) and (Y,Ψ) are topological spaces and f is a mapping from X into Y then prove that the following statements are equivalent (a) The mapping f is continuous (b) The inverse image of f of every Ψ -closed set is \mathcal{T} -closed set (c) If $x \in X$ then inverse image of every Ψ -neighbourhood of $f(x)$ is a \mathcal{T} -neighbourhood of x (d) If $x \in X$ and X is a Y -neighbourhood of $f(x)$, then there is a \mathcal{T} -neighbourhood $f(x)$ of $f(x)$ such that $f(x) \in X$ for $f(x) \in X$ then $f(x) \in X$ for \in$ | 10 | |---------|--|----| | Q: 5. | Define a connected space and prove that the space (R, \mathcal{U}) is connected. | 10 | | | OR | | | Q: 5 [A | Prove that if (X, \mathcal{T}) is disconnected then there is a nonempty proper subset of X that is both \mathcal{T} -open and \mathcal{T} -closed. | 5 | | [B | If (X, \mathcal{T}) is compact and Y is a \mathcal{T} -closed subset of X, then prove that (Y, \mathcal{T}_Y) is also compact. | 5 | | Q: 6 [A | If $Y \subset R$ and the space (Y, \mathcal{U}_Y) is compact, then prove that Y is bounded and \mathcal{U} -closed. | 5 | | [E | B] Let (X, \mathcal{T}) and (Y, ψ) be topological spaces, and let f be a $\mathcal{T} - \psi$ continuous mapping of X onto Y . If (X, \mathcal{T}) is compact then prove that (Y, ψ) is also compact. | 5 | | | OR | | | Q: 6 [A | A] Prove that every compact Hausdorff space is a T_3 -space. | 5 | | | 3] If (X, \mathcal{T}) is a compact space, and if (Y, ψ) is a Hausdorff space, and if f is a one-to-one $\mathcal{T} - \psi$ continuous mapping of X onto Y , then prove that f is a homeomorphism. | 5 | • . .