No of printed pages: 3

SARDAR PATEL UNIVERSITY

B.Sc.(SEMESTER - VI) EXAMINATION - 2019 Wednesday, 27th March, 2019 MATHEMATICS: US06CMTH02 (COMPLEX ANALYSIS)

Time: 10:00 a.m. to 1:00 p.m.

Maximum Marks: 70

Que.1 Fill in the blanks.

(1) $f(z) = (x^2 - y^2 - 2y) + i(2x - 2xy)$ can be expressed as $f(z) = \dots$

10

- (a) $\bar{z}^2 + 2z$ (b) $\bar{z}^2 + iz$ (c) $\bar{z}^2 2iz$ (d) $\bar{z}^2 + 2iz$

- (2) $\lim_{z \to \infty} f(z) = w_0$ iff $= w_0$
- (a) $\lim_{z \to \infty} \frac{1}{f(z)}$ (b) $\lim_{z \to 0} \frac{1}{f(z)}$ (c) $\lim_{z \to 0} f\left(\frac{1}{z}\right)$ (d) $\lim_{z \to 0} \frac{1}{z}$ (3) Singular point of $f(z) = \frac{z^3 + 4}{(z^2 3)(z^2 + 1)}$ are $z = \dots$
- - (a) $\sqrt{3}$, i (b) $\pm\sqrt{3}$ (c) $\pm\sqrt{3}$, $\pm i$ (d) none of these
- (4) $f(z) = \frac{z^3 + i}{(z^2 3z + 2)}$ is analytic in
 - (a) $\{\pm\sqrt{1}, \pm 2\}$ (b) $\mathbb{C} \{1, 2\}$ (c) $\mathbb{C} \{3, \pm 2\}$ (d) $\{1, 2\}$
- $(5) exp\left(\frac{2+\pi i}{4}\right) = \dots$
 - (a) $\sqrt{e/2} (1-i)$ (b) $\sqrt{e/2} (1+i)$ (c) $\frac{\sqrt{e} (1+i)}{2}$ (d) none of these
- (6) $i \sin iy = \dots$
 - (a) $-\sinh y$ (b) $i\sinh y$ (c) $-i\sinh y$ (d)
- (7) $e^{z_1} = e^{-z_2}$ then $z_1 = \dots$
 - (a) $-z_2 + 2n\pi i$ (b) $z_2 + 2n\pi$ (c) $-z_2$ (d)
- (8) Image of y > 0 under the transformation w = (1+i)z is
 - (a) u < v (b) v < u (c) 0 < v (d) v = u
- (9) Fixed point of $w = \frac{6z 9}{z}$ are
 - (a) 0 (b) i (c) 2 (d)
- (10) Image of y > 1 under the transformation w = (1 i)z is
 - (a) u+v<2 (b) v+u>2 (c) u-v>2 (d) u-v<2

Que.2 Answer the following (Any Ten)

20

- (1) If $\lim_{z \to z_0} f(z) = w_0$; $\lim_{z \to z_0} g(z) = w_1$. Then prove that $\lim_{z \to z_0} [f(z)g(z)] = w_0 w_1$.
- (2) By using definition, prove that $\frac{d}{dz}(z^n) = nz^{n-1}$ for all $n \in \mathbb{N}$.
- (3) Express $f(z) = (x^2 y^2 2y) + i(2x 2xy)$ in terms of z and simplify the result, where z = x + iy.

(4) Prove that $f(z) = \bar{z}$ is nowhere analytic. (5) Is $f(z) = 2xy + i(x^2 - y^2)$ entire function? Verify it. (6) Prove that $e^{-y} \sin x$ and $-e^{-y} \cos x$ are harmonic at each point of domain of xy-plane. (7) Solve $e^z = w$ for z. (8) Prove that $cos z_1 - cos z_2 = -2sin\left(\frac{z_1 + z_2}{2}\right)sin\left(\frac{z_1 - z_2}{2}\right)$. (9) Find all zeros of $\cosh z$. (10) Discuss the image of w = (i+1)z + 2. (11) Find the image of line $x \geq c_1$, $c_1 > 0$ under the transformation w = 1/z is the circle Also show the (12) Find the image of $a \le x \le b$, $c \le y \le d$ under the transformation $w = e^z$. (a) Give an example of function such that its real and imaginary component have continuous partial derivative of all order at a point but the function is not differentiable at that point. Verify it. 6 (b) By using definition of limit prove that $\lim_{z\to z_0} (z^2+c) = z_0^2+c$, where c is complex constant. 4 OR Que.3 (c) State and prove chain rule for differentiating composite functions. 6 (d) If $f(z) = \frac{x^3y(y-ix)}{z(x^6+y^2)}$, $z \neq 0$, f(0) = 0. Prove that f(z) differentiable at 0. 4 Que.4 (a) Let f(z) = u(x,y) + iv(x,y) be defined in some ϵ neighborhood of $z_0 = x_0 + iy_0$, suppose that the first order partial derivatives of u and v with respect to x and y exists everywhere in that neighborhood, if these partial derivatives all continuous at (x_0, y_0) and satisfies the C-R equations $u_x = v_y$, $u_y = -v_x$ at (x_0, y_0) . Then prove that $f'(z_0)$ exists . (b) Prove that $f(z) = (z^2 - 2)e^{-z}$ is entire function . 4 (c) Give a function which is differentiable at a point but not analytic at that point. Verify it. 3 (d) Find harmonic conjugate v(x,y) of harmonic function $u(x,y) = \frac{y}{x^2 + y^2}$ 3 (e) Give an example of function such that partial derivatives of its components satisfies the C-R equations at some points but function is not differentiable at that point. Verify it . (a) Prove that $\overline{exp(iz)} = exp(i\bar{z})$ iff $z = n\pi$, $n \in \mathbb{Z}$. 4 (b) Solve $e^z = -1 = \sqrt{3}i$. .} (c) Prove that $\frac{d}{dx}(\sin^{-1}z) = \frac{1}{\sqrt{1-z^2}}$.

Que.5 (d) Solve $\sin w = -i$.

OR

(e) Evaluate $log(-1+\sqrt{3}i)$ and $log(-1-\sqrt{3}i)$. 3

3

3

(f) Prove that
$$|\sinh z|^2 = \sinh^2 x + \sin^2 y = \cosh^2 x - \cos^2 y$$
.

- Que.6 (a) Find the image of y > 1 under the transformation w = (1 i)z. Also sketch the region .
 - (b) Find the image of 0 < y < 1/2c under the transformation w = 1/z . Also sketch the region .
 - (c) Find linear fractional transformation that maps the points $z_1=-1$, $z_2=0$, $z_3=1$ on to $w_1=-i$, $w_2=1$, $w_3=i$ respectively.

4

OR

- Que.6 (d) Prove that all linear fractional transformation that maps the upper half plane Imz>0 on to the open disk |w|<1 and the boundary Im z=0 on to the boundary of |w|=1 is given by $w=e^{i\alpha}\left[\frac{z-z_0}{z-\overline{z_0}}\right]$, $Im\ z_0>0$. Also prove the converse.
 - (e) Prove that the transformation $w=\sin z$ is a one-one mapping of the semi infinite strip $y\geq 0$, $-\pi/2\leq c_1\leq \pi/2$ in the z-plane onto the upper half $v\geq 0$ of the w-plane.
