No. of Printed Pages: 2

PATEL UNIVERSITY

Vallabh Vidyanagar B.Sc.Sem-VI

MATHEMATICS: US06CMTH01

(Real Analysis-III)

25th March'2019, Monday

10.00 am to 01:00 pm

Maximum Marks: 70

Q.1 Choose the correct option in the following questions, mention the correct option in [10]the answerbook.

(1) A bounded function f is said to be integrable over [a, b], if there is fixed number I so that for every $\epsilon > 0$ there exists some $\delta > 0$ such that (a) $|S(P, f) - I| < \epsilon$ for every partition P with $\mu(P) > \delta$ (b) $|S(P,f)-I|>\epsilon$ for every (c) $|S(P,f)-I|<\epsilon$ for every partition P with $\mu(P)<\delta$ partition P with $\mu(P) > \delta$ (d) $|S(P, f) - I| > \epsilon$ for every partition P with $\mu(P) > \delta$

(2) In usual notations, the Lagrange's form of remainder in Taylor's theorem is

(a) $\frac{h^{n-1}(1-\theta)^{n-p}}{p(n-1)!} f^n(a+\theta h)$ (b) $\frac{h^n(1-\theta)^{n-p}}{p(n-1)!} f^n(a+\theta h)$ (c) $\frac{h^n}{(n-1)!} f^n(a+\theta h)$ (d) $\frac{h^n}{n!} f^n(a+\theta h)$

(3) If μ is a mesh of the partition $P = \{x_0, x_1, x_2, \dots, x_n\}$ for [a, b] then for every $i = 1, 2, \dots, n$ (b) $\Delta x_i < \mu$ (c) $\Delta x_i \ge \mu$ (d) $\Delta x_i \le \mu$ (a) $\Delta x_i = \mu$

(4) A function f cannot be integrable over [a, b], if it is (c) Continuous over [a, b](b) Decreasing over [a, b](a) Increasing over [a, b]

(d) None of these

(5) If P is a partition of [a, b], then

(a) $a \in P$, but $b \notin P$ (b) $a \notin P$, but $b \in P$ (c) $a \in P$ and $b \in P$ (d) $a \notin P$ and $b \notin P$

(6) If a function f has a finite number of points of discontinuity over [a, b] then it is (b) integrable over [a, b](a) Lot integrable over [a, b]

(c) monotonic over [a, b](d) none

(7) A function f(x) has a minimum at c if while x passes through c, f changes from (a) an increasing to a decreasing function (b) a decreasing to an increasing function (d) none (c) an increasing to a constant function

(8) For a bounded function f defined on [a,b] and two partitions P_1 , P_2 and $P^*=P_1\cup P_2$ (b) $U(P_1, f) < U(P^*, f)$ (c) $U(P_1, f) \ge U(P^*, f)$ (a) $U(P_1, f) \le U(P^*, f)$ (d) $U(P_1, f) > U(P^*, f)$

(9) A twice differentiable function f(x) has a maximum at c if

(b) f'(c) = 0, f''(c) > 0(a) f(c) = 0, f'(c) > 0(d)f(c) = 0, f''(c) < 0(c)f'(c) = 0, f''(c) < 0

(10) A refinement of a partition P contains

(a) At least one element less than the elements of P (b) At least one element more than the elements of P (c) All the elements are different from P (d) No element different from P

[20]Q.2 Attempt any Ten.

(1) Show that if two functions have equal derivatives at all points of [a, b], then they differ only by a constant.

(2) Define: Stationary Point and Stationary Value.

(3) Show that $\sin x(1+\cos x)$ is maximum at $x=\frac{\pi}{3}$.

(4) A function f is integrable over [a, c] and [c, b]. If $\int_a^c f dx = k$, $\int_c^b f dx = 3k$ and $\int_a^b f dx = 36$, then find k.

(5) Let $f:[0,1] \to \Re$ be defined by f(x)=2.7. Find $\int_0^1 f dx$.

(6) Prove that $\frac{\sin \alpha - \sin \beta}{\cos \beta - \cos \alpha} = \cot \theta$, where $0 < \alpha < \theta < \beta < \frac{\pi}{2}$.

(7) For a bounded function $f(x) = x^2, x \in [1,7]$ and partition $P = \{1,2,5,7\}$, find U(P,f).

(8) State First mean value theorem of differential Calculus.

·
 (9) State Taylor's theorem. (10) State the Second Fundamental theorem of integral calculus. (11) In usual notations, prove that m(b − a) ≤ ∫_a^b f dx ≤ M(b − a), a ≤ b. (12) Prove that the function [x] where [x] denotes the greatest integer not greater than x, is integrable on [0, 4] and ∫₀⁴ [x] dx = 4.
Q.3 (a) State and prove Cauchy's mean value theorem. (b) A twice differentiable function f is such that $f(a) = f(b) = 0$ for $a < c < b$. Prove that there is at least one value ξ between a and b for which $f''(\xi) < 0$. OR
Q.3 (c) Prove Taylors theorem with Cauchys form of remainder. [5]
(d) Examine the validity of the hypothesis and the conclusion of Lagrange's mean value theorem for the function $f(x) = 2x^2 - 7x + 10$ on [2, 5].
Q.4 (a) Prove that a conical tent of a given capacity will require the least [6]
amount of canvas when the height is $\sqrt{2}$ times the radius of the base. (b) Show that maximum value of the function $(x-1)(x-2)(x-3)$ is [4]
$\frac{2\sqrt{3}}{9}$ at $2 - \frac{1}{\sqrt{3}}$.
Q.4
(c) If c is an interior point of the domain $[a, b]$ of a function f and is such that $(i)f'(c) = f''(c) = \cdots = f^{n-1}(c) = 0$ and $(ii)f^n(c)$ exist and is zero, then show that for n odd, $f(c)$ is not an extreme value, while for n even $f(c)$ is maximum or minimum Value according as $f^n(c)$ is negative or positive.
(d) Examine the function $(x-3)^5(x+1)^4$, for extreme values.
 Q.5 (a) State and Prove Darboux's theorem for integration. (b) By using definition of integration, prove that the function (3x+1) is integrable on [1,2] and find its integral value.
OR
 Q.5 (c) Show that a necessary and sufficient condition for the integrability of a function f is that every ε > 0, there exists δ > 0 such that for every partition P of [a, b] with mesh less than δ, U(P, f) - L(P, f) < ε. (d) Show that the product of two bounded and integrable functions on [a, b] is also integrable. [5]
0.6
 (a) If a function f is bounded and integrable on [a, b], then show that the function F defined as F(x) = ∫_a^x f(t)dt, a ≤ x ≤ b is continuous on [a, b]. Also, if f is continuous at a point c of [a, b], then prove that F is derivable at c and F'(c) = f(c). (b) If f is continuous on [a, b], then there exists a number ξ in [a, b] (5) such that ∫_a^b f dx = f(ξ)(b - a).
OR
Q.6 (c) Show that a function f is integrable on $[a, b]$ iff for $\epsilon > 0$, there exists $\delta > 0$ such that if P, P are any two partitions of $[a, b]$ with mesh less that δ , [5]
then prove that $ S(P,f) - S(P',f) < \epsilon$. (d) Prove that a bounded function f having a finite number of points of discontinuity on $[a,b]$ is integrable on $[a,b]$.
~~~~