SC

[81/A-17]

SEAT No.

No. of Printed Pages: 3

SARDAR PATEL UNIVERSITY SEMESTER-VI

B.Sc. EXAMINATION MICROBIOLOGY

				US06CN	NICO3				
			(M	icrobial Bio	chemistr	γ)			
Date: 29/03/2019 Day : Friday N.B: Figures on the right indicate marks.					•):00a.m.to 1 jarks: 70	l:00p.m.	
Q.1		om the giver	options.	(10)					
Ť	1		is a preci	ursor for bi	iosynthes	sis of Argi	nine and Pro	line.	
		(a)	Glutamic acid			Gluconic			
							plutaric acid		
	2		Pase complex:						
		(a)	protonmotive	force	(b)	proton p	oump		
			active pump			passive	pump		
	3	β-cha	ins of Fi has		sites.				
			catalytic			alloster			
		(c)	passive		(d)	Zymoge	n.	D) auda astra	
	4		sphogluconic	acid is	conver	ted to	Ribulose-5	Phosphate	
		by	·		41.5	0	محماميم سام محدد	ulation	
			Interconvers					ylation	
	_	(c)	Reductase		(d)	Phospho	orylation	inhihitad	
	5		inate dehyd	rogenase 	астічіту	' IS C	ompermivery	Minipurea	
		(a)	Malic acid		(b)	Fumari	c acid		
		(c)	Malonate		• •	Acetat			
	6		enzyme	. is respo	nsible 1	for conv	ersion of 1	pyruvate to	
			acetate						
		(a)	pyruvatedeh	ydrogenase	(b)	Pyruva	te carboxyla:	se	
		(c)	Pyruvate kin	ase	(d)	Enolase	3		
	7	-	olete B-oxid sm	ation of Diecules of F	1 20.		of Palr	nitoyl CoA	;
		(a)	108		(b)	180			
		(c)	118		(d)	123		4.40	
								1/3	
					(<u>1</u>)			CP.T.0)	

	U	scientist reported that farry acids were degraded by removal							
		of two carbon at a time.							
		(a) Fritz knoop (b) Sahil Wakil							
		(c) Efrain Racker (d) John Walker							
	9	All tansaminases requirecoenzyme derived from Vitamin B ₆ .							
		(a) TPP (b) Pyridoxal phosphate							
		(c) Biotin (d) Lipoic acid							
	10	enzyme convert arginine to ornithine and urea							
		(a) Arginosuccinase (b) Urease							
		(c) Arginase (d) Proteinase							
ე .2		Give short answers to the following questions. (02 - marks each)	(20)						
		(Attempt Any Ten)							
	1	Explain: Auxotroph and Secondary metabolism.							
	2	Describe structure and role of ATP.							
	3	Describe chemical composition of F ₁ subunit of ATP Synthase.							
	4	Give names of three enzymes and five co-enzymes required by PDH							
		complex.							
	5	In non-physiological state, how TCA cycle reactions are regulated?							
	6	Explain the four different Anapleurotic reactions.							
	7	Explain reaction where role of Acetyl CoA carboxylase is involved.							
	8	Define: a-Oxidation and B-Oxidation of fatty acid.							
	9	What are the major differences between β -Oxidation of fatty acid and							
		fatty acid biosynthesis.							
	10	Define: Transamination.							
	11	Enlist the names of enzymes involved in Urea cycle.							
	12	Enlist the four common enzymes shared for biosynthesis of isoleucine							
		and valine.							
Q. 3	(A)	Describe: Use of biochemical mutant for studying intermediary	(6)						
		metabolism,							
	(B)	Draw a neat labeled diagram of ATP Synthase.	(4)						
		OR							
ე .3	(A)	Discuss organization and role of ETC.	(5)						
	(B)	Write on:Oxidative phosphorylation.	(5)						

Q.4	(A)	(A) Discuss various steps involved during CO_2 assimilation in dark phase.			
	(B)	Justify:-Gluconeogenesis is not a complete reversal of glycolysis. OR	(4)		
Q.4	(A)	Discuss various steps involved where pyruvate is oxidized to form CO_2 and H_2O .			
	(B)	E.D. pathway	(4)		
Q.5	` '	Discuss various steps involved in biosynthesis of saturated fatty acid.	(10)		
•		OR			
Q.5		Discuss various steps involved in β -Oxidation of Palmitoyl coA with its energetics.	(10)		
Q.6		Write notes on following:			
•	(A)	•	(6)		
	(B)	Deamination and its types	(4)		
	` '	OR			
Q.6		Write notes on following:			
	(A)		(5)		
	(B)	B) Biosynthesis of amino acids in which Chorismate is a key intermediate			

		(2)			

. .