SARDAR PATEL UNIVERSITY
 B.Sc. (VI Semester) Examination
 Saturday, $13^{\text {th }}$ April 2013
 3-6 pm
 US06CMTH05 - Mathematics/Graph Theory

Total Marks: 70
Note: Figures to the right indicate full marks.
Q. 1 Choose the most appropriate option for the following and write it down in the answer-book.
(1) Degree of pendant vertex is \qquad .
(a) 3
(b) 2
(c) 1
(d) 0
(2) An alternative sequence of vertices and edges in which no edge is covered more than once is called \qquad .
(a) walk
(b) circuit
(c) self loop
(d) path
(3) In a connected graph there is a path between \qquad pair of vertices.
(a) at least one
(b) every
(c) no
(d) None
(4) A tree with n vertices has \qquad edges.
(a) n
(b) $n+1$
(c) $\mathrm{n}+2$
(d) $\mathrm{n}-1$
(5) A vertex with minimum ecentricity is called \qquad -
(a) diameter
(b) centre
(c) radius
(d) none
(6) A spanning tree T of graph contains all the \qquad of G.
(a) vertices
(b) edges
(c) regions
(d) None
(7) By removing cut-set from the given graph, it becomes \qquad graph.
(a) null
(b) connected
(c) disconnected
(d) None
(8) Every connected graph has \qquad spanning tree.
(a) at most one
(b) at most two
(c) exactly one
(b) at least one
(9) In a graph having 5 vertices and 4 regions, number of edges equal to \qquad -.
(a) 3
(b) 5
(c) 7
(d) 9
(10) $\mathrm{K}_{3,3}$ is \qquad graph.
(a) planar
(b) non-planar
(c) disconnected
(d) None

Q. 2 Answer the following in short. (Attempt Any Ten)

1. Define: Isomorphic graphs.
2. Describe utilities problem.
3. Define: Parallel edges with illustration.
4. What is Euler graph?
5. Explain the operation ring sum of two graphs.
6. Define: Arbitrary traceable graph with an example.
7. Define : Spanning tree with illustration.
8. Explain about branch of a spanning tree.
9. Define : Fundamental Circuit.
10. Define : Homeomorphic graphs with example.
11. Draw Kuratowski's first graph.
12. By using Euler's theorem prove that Kuratowski's first graph is nonplanar.
Q. 3
(a) Show that a simple graph G with n -vertices and k -components must
have atmost $\frac{(n-k)(n-k+1)}{2}$ edges.
(b) Prove that a graph G is disconnected iff its vertex set V can be partitioned into two non-empty disjoint subsets V_{1} and V_{2} such that there exists no edge in G whose one end vertex is in V_{1} and the other in V_{2}.

OR

Q. 3
(a) If a graph has two vertices of odd degree, then show that there must be a path between them.
(b) What is Königsberg bridge problem ? Solve it by using graph theory.
Q. 4
(a) Show that every tree has either one or two centre.
(b) Prove that a connected graph G is an Euler graph iff all vertices of G are of even degree.

OR

Q. 4
(a) Prove that a tree with n-vertices has $n-1$ edges.
(b) Show that a connected graph G is an Euler graph iff it can be
Q. 5
(a) Show that in a connected graph G any minimal set of edges containing at least one branch of every spanning tree of G is a cut-set.
(b) Discuss method of finding all spanning trees of a graph.

OR

Q. 5
(a) Prove that every circuit has even number of edges in common with cut-set.
(b) Show that the minimum vertex connectivity one can achieve with a
graph G of an vertices and e edges $(e \geq n-1)$ is $\left[\frac{2 e}{n}\right]$.
Q. 6 State and prove Euler theorem.

OR

Q. 6 State and prove the necessary and sufficient condition for two planar graphs to be dual of each other.

