SARDAR PATEL UNIVERSITY B.Sc. (VI Semester) Examination Saturday, 13th April 2013 3 - 6 pm US06CMTH05 – Mathematics/Graph Theory

Q.1 Choose the most appropriate option for the following and write it down in

Total Marks: 70

[10]

Note: Figures to the right indicate full marks.

بامما ومتنقفهم مطلا

	the answer-book.			
(1)	Degree of pendant vertex is			
	(a) 3 (b) 2 (c) 1 (d) 0			
(2)	An alternative sequence of vertices and edges in w	hich no edge is		
	covered more than once is called	-		
	(a) walk (b) circuit (c) self loop	(d) path		
(3)	In a connected graph there is a path between	pair of		
	vertices.			
	(a) at least one (b) every (c) no (c	l) None		
(4)	A tree with n vertices has edges.			
	(a) n (b) n+1 (c) n+2 (c	l) n-1		
(5)	A vertex with minimum ecentricity is called			
	(a) diameter (b) centre (c) radius (c	l) none		
(6)	A spanning tree T of graph contains all the c			
		l) None		
(7)	By removing cut-set from the given graph, it becomes _	graph.		
	(a) null (b) connected (c) disconnected Every connected graph has spanning tree.	(d) None		
(8)	Every connected graph has spanning tree.			
	(a) at most one(b) at most two(c) exactly one(b) at least one			
(-)	(c) exactly one (b) at least one			
(9)	In a graph having 5 vertices and 4 regions, number of ed	dges equal		
	to			
(10)		1) 9		
(10)	K _{3,3} is graph.	1) N I		
	(a) planar (b) non-planar (c) disconnected (c	i) None		
• •		[00]		
	Answer the following in short. (Attempt Any Ten)	[20]		
1.	Define: Isomorphic graphs.			
2.	Describe utilities problem.			
3.	Define: Parallel edges with illustration.			
4.	What is Euler graph?			
5. 6	Explain the operation ring sum of two graphs.			
6. 7	Define: Arbitrary traceable graph with an example.			
7. o	Define : Spanning tree with illustration.			
8. 9.	Explain about branch of a spanning tree. Define : Fundamental Circuit.			
9. 10.	Define : Homeomorphic graphs with example.			
10.	Denne . Homeomorphic graphs with example.			

- 11. Draw Kuratowski's first graph.
- 12. By using Euler's theorem prove that Kuratowski's first graph is non-planar.

1

Q.3				
(a)	Show that a simple graph G with n-vertices and k-components must			
	have atmost $\frac{(n-k)(n-k+1)}{2}$ edges.			
(b)	Prove that a graph G is disconnected iff its vertex set V can be partitioned into two non-empty disjoint subsets V_1 and V_2 such that there exists no edge in G whose one end vertex is in V_1 and the other in V_2 .			
OR				
Q.3 (a)	If a graph has two vertices of odd degree, then show that there must	[05]		
(b)	be a path between them. What is Königsberg bridge problem ? Solve it by using graph theory.			
Q.4				
(a) (b)	Show that every tree has either one or two centre. Prove that a connected graph G is an Euler graph iff all vertices of G are of even degree.	[05] [05]		
OR				
Q.4 (a) (b)	Prove that a tree with n-vertices has n-1 edges. Show that a connected graph G is an Euler graph iff it can be decomposed into circuits.	[05] [05]		
Q.5		[05]		
(a)	Show that in a connected graph G any minimal set of edges containing at least one branch of every spanning tree of G is a cut-set.			
(b)	Discuss method of finding all spanning trees of a graph.			
OR				
Q.5 (a)	Prove that every circuit has even number of edges in common with	[05]		
(b)	cut-set. Show that the minimum vertex connectivity one can achieve with a [
	graph G of an vertices and e edges $(e \ge n-1)$ is $\left[\frac{2e}{n}\right]$.			
Q.6	State and prove Euler theorem.	[10]		
Q.6	OR State and prove the necessary and sufficient condition for two planar graphs to be dual of each other.	[10]		
	$\odot \odot \odot \odot \odot$			