Seat No.:

No of printed pages: 3

SARDAR PATEL UNIVERSITY B.Sc. (SEMESTER - VI) EXAMINATION - 2018 Friday , 6th April , 2018 MATHEMATICS : US06CMTH06 (MECHANICS - 2)

Time	: 10:00 a.m. to 1:00 p.m. Maximum Marks : 70	
Que.1	Fill in the blanks.	
(1)	Linear momentum in polar coordinate system is $\bar{p} = \dots$	10
	(a) $(m\dot{r}\ ,\ mr\dot{\theta})$ (b) $(m\dot{r}\ ,\ m\dot{r}\theta)$ (c) $(m\dot{r}\ ,\ mr\theta)$ (d) $(m\dot{\theta}\ ,\ mr\theta)$	
(2)	The reversed effective forces and the real forces together give	
	(a) potential energy (b) kinetic energy (c) force (d) statical equilibrium	
(3)	Angular momentum of a particle about a point $A(2,3)$ is	
	(a) $m((x-2)\dot{x}-(y-3)\dot{y})$ (b) $m((x-2)\dot{y}+(y-3)\dot{x})$ (c) $m((x-2)\dot{y}-(y-3)\dot{x})$ (d) $m((x-2)\ddot{y}-(y-3)\ddot{x})$	
(4)	The equation of motion of a projectile with resistance for the forces vertically is given by	
	(a) $m\ddot{x} + R\cos\theta = 0$ (b) $m\ddot{y} + R\sin\theta + mg = 0$ (c) $\ddot{y} + R\sin\theta + mg = 0$ (d) $m\ddot{y} + R\sin\theta + g = 0$	
(5)	The equation of motion of projectile is	
	(a) $y = x \tan \alpha - \frac{gx^2}{2u^2 \cos^2 \alpha}$ (b) $y = u \sin \alpha t - \frac{gt^2}{2}$ (c) $y = x \tan \alpha + \frac{gx^2}{2u^2 \cos^2 \alpha}$ (d) both a and b	
(6)	The path of projectile is	
	(a) circle (b) ellipse (c) parabola (d) hyperbola	
(7)	Moment of inertia of rod depends on of rod .	
	(a) b and c both (b) mass (c) length (d) radius	
(8)	The squares of the periodic times of the planets are proportional to the of the semi major axis of their orbits .	
	(a) cube roots (b) square roots (c) squares (d) cubes	
(9)	The coefficient of restitution e is always	
	(a) 1 (b) ≥ 0 (c) < 1 (d) > 0	
(10)	A sphere with elasticity 0.5 collide directly to another identical sphere at rest , their velocities after impact are in the ratio	
Que.2	Answer the following (Any ten)	20
(1)	Define : Linear momentum , Angular momentum about a point , Linear momentum of system , Angular momentum of system .	
(2)	If force acting on particle is perpendicular to it's velocity then prove that speed of particle is constant.	
(3)	Find Angular momentum of particle in polar coordinate system at $(r,0)$.	

- (4) If R is the horizontal range and H is the greatest height attained by the projectile then prove that the initial velocity of projectile is given by $\sqrt{2g\left(H + \frac{R^2}{16H}\right)}$.
- (5) A particle is projected upward in the direction of making an angle 60° with the horizontal. Show that its velocity at maximum height is half of its initial velocity (Neglect resistance of air).
- (6) A particle just clear a wall of height 'b', at a distance 'a' and and strikes the ground at a distance 'c', from the point of projection. Prove that the angle of projection is given by, $\alpha = \tan^{-1}\left(\frac{bc}{ac-a^2}\right)$.
- (7) In a motion under a central force, prove that the areal velocity is constant.
- (8) Find the law of force towards the pole for the curve described by $r = ae^{\theta \cot \alpha}$
- (9) By using theorem of perpendicular axes find moment of inertia of a rectangular plate of mass m and edges of lengths 2a and 2b about a line through its center perpendicular to its plane.
- (10) Find the equation of motion of flywheel.
- (11) State and prove Principle of angular momentum with respect to mass center relative to impulsive force .
- (12) Find workdone by the impulsive force.
- Que.3 (a) State and prove principle of conservation of energy for system of particle.
 - (b) Obtain useful forms of equations of motion of a particle.

5

4

5

 \mathbf{OR}

- Que.3 (c) The rate of change of angular momentum of a system relative to the mass center is equal to the moment of the external forces about the mass center.
 - (d) Verify the principle of conservation of energy, if a particle of mass m (i) falling vertically downward under the force of gravity (ii) slides down on a smooth inclined plane starting from the rest.
- Que.4 (a) Obtain the equation of motion of projectile with resistance in the form $x = x_0 + u_x \ t \frac{1}{2} \phi \ u_x \ t^2 \quad ; \quad y = y_0 + u_y \ t \frac{1}{2} g \ t^2 \frac{1}{2} \phi \ u_y \ t^2 \left(1 \frac{gt}{3 \ u_y}\right). \tag{6}$
 - (b) A particle of mass m is projected vertically upward in medium for which resistance R is mk^2v^2 . If the initial velocity is v_0 then show that the particle returns to the point of projection with velocity v_1 such that $v_1^2 = \frac{gv_0^2}{g + kv_0^2}$.

OR

- Que.4 (c) For a particle, moving with resistance which is independent of height, prove that $\frac{1}{v}\frac{dv}{d\psi} = \tan h\psi + \phi(v).$
 - (d) A particle of mass m is projected in a vertical plane through the point of projection with velocity v_0 in the direction making an angle α with the horizontal axis. Show that the path of projectile is parabola. Find its vertex, focus and equation of directrix.
- Que.5 (a) State and prove the theorem of KÖNIG.
 - (b) Obtain differential equation of central orbit .
 - (c) State the laws of the inverse square.

Que.5 (d) In usual notation prove that the semi latus rectum and the eccentricity are given by

 $l = \frac{h^2}{\mu} \; ; \; e = \sqrt{1 + \frac{2Eh^2}{\mu^2}} \; \text{respectively} \; . \label{eq:lemma_lemma$

- (e) By using theorem of parallel axes find moment of inertia of a rod of mass m and length 2a about a line through one end perpendicular to the rod.
- Que.6 (a) A series of n elastic spheres of masses $1, e, e^2, \ldots, e^{n-1}$ are at rest separated by intervals with their centre in the straight line. The first made to collide directly to the second ball with velocity u. Show that the first n-1 spheres will move the same velocity (1-e)u and the last with velocity u. Also prove that kinetic energy of the system is $\frac{1}{2}(1-e+e^n)u^2$.
 - (b) A particle falls from height h on a horizontal plane and rebounds continuously . Show that whole time before particle comes to rest is $\sqrt{\frac{2h}{g}} \left(\frac{1+e}{1-e} \right)$.

6

4

OR.

- Que.6 (c) Obtain the loss of kinetic energy due to impact of two spheres of masses m_1 and m_2 with velocities u_1 and u_2 relative to the mass center.
 - (d) State and prove Principle of linear momentum relative to impulsive force.
 - (e) A sphere collides directly to an equal sphere which is at rest, show that the fraction $\frac{1}{2}(1-e^2)$ of the original kinetic energy is lost during the impact.

•