No of Brinted Pg: 3

~ .		~ T 4 4.	TO TO THE TO THE	70 71 1
Sandan.	Dotal	Lauroreity	Vallahh	Vidyanagar
Saruar	1 ater	OHITAGI SITA	vanaon	viuvanagai
		U /		v

B.Sc. Examinations: 2017-18 - VI SEM

Subject: Mathematics

US06CMTH05

Max. Marks: 70

Graph Theory

Date: 04/04/2018, wednesday

Timing: 10:00 am - 01:00 pm

Q: 1. Answer the following by choosing correct answers from given choices.

10

[1] If degree of a vertex is zero then it is called

[A] a pendent vertex

[B] an isolated vertex

[C] circuit

[D] path

[2] If there are 5 edges in a simple graph then the total of degrees of vertices of the graph is

[A] 5

[B] 10

[C] 15

[D] 20

[3] If terminal vertices of a walk in a graph are same then it is called

[A] an open walk

[B] a closed walk

|C| path

[D] none

[4] A connecetd graph is an Euler graph if all vertices of the graph are

[A] of odd degree

[B] of even degree

[C] isolated

[D] pendent

[5] An operation of edge deletion on a graph removes corresponding

[A] edge only

[B] vertices

[C] vertices and edges both

|D| none

[6] The ring sum of two graphs does not include

[A] common edges [B] common vertices

[C] pendent vertices

[D] none

[7] Rank of a graph with 4 vertices, 6 edges and 2 components is

[A] 1

[B] 2

[D] 4

[8] A tree is a ____-connected graph.

|A| 0

[B] 1

[C] 2

[D] 3

[9] If graphs G_1 and G_2 are isomorphic and nullity of G_1 is 7 then nullity of G_2

[A] 7

[B] 14

[C] 21

[D] 49

[10] A planar graph with 7 vertices and 10 edges has ____ faces

[A] 5

[B] 7

[C] 9

[D] 10

Answer any TEN of the following. Q: 2.

20

[1] Discuss Konigsberg bridge problem

[2] Define: (i) Subgraph (ii) Closed walk

[3] Define: (i) Edge disjoint subgraphs

(ii) Length of path

[4] Draw all labeled trees with four vertices.

Page 1 of 3

[1.7.0.]

- [5] Define Complete graph with an example.
- [6] Explain Fusion of vertices with an example.
- [7] Explain Spanning Tree with an example.
- [8] Describe network flows
- [9] Prove that the edge connectivity of a graph G can not exceed the degree of a vertex with the smallest degree in G.
- [10] Discuss Kurtowski's First graph.
- [11] For a simple connected planar graph with n-vertices , e-edges (e>2) and f-regions prove the following.
 - (i) $e \geqslant \frac{3}{2}f$ (ii) $e \leqslant 3n 6$
- [12] Define Circuit correspondence
- Q: 3 [A] Prove that a graph G is disconnected iff its vertex set V can be partitioned into two non-empty disjoint subsets V_1 and V_2 such that there exists no edge in G whose one end vertex is in subset V_1 and other in subset V_2
 - [B] Explain Isomorphism between two graphs. and examine whether following pair of graphs is isomorphic or not.

5

5

5

5

5

5

OR

- Q: 3 [A] Prove that a simple graph with n vertices and k-components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.
 - [B] If a graph (connected or disconnected) has exactly two vertices of odd degree then prove that there must be a path joining these two vertices.
- **Q:** 4 [A] Prove that a tree with *n*-vertices has n-1 edges.
 - [B] Prove that in a complete graph with n vertices there are $\frac{n-1}{2}$ edge disjoint Hamiltonian circuits, if n is an odd number ≥ 3 .

OR

Q: 4	[A]	Prove that every tree has either one or two centers.			
٠	[B]	Prove that a connected graph G is an Euler graph iff all vertices of G are of even degree.	5		
Q: 5	[A]	Describe a method to find all spanning tree of a graph.	5		
	[B]	Prove that the vertex connectivity of any graph G can never exceed the edge connectivity of G .			
		OR			
Q: 5	[A]	Prove that every circuit has an even number of edges in common with any cut-set.	5		
	[B]	Prove that every cut-set in a connected graph G must contain at least one branch of every spanning tree.	5		
Q: 6	3 [A]	Prove that 2-isomorphic graphs have circuit correspondence.	5		
	[B]	State and prove Euler's theorem for planar graphs.	5		
OR					
Q:	6.	Define Planar graph and prove that a graph has a dual iff it is planar.	10		