No of printed pages: 3

SARDAR PATEL UNIVERSITY B.Sc.(SEMESTER - VI) EXAMINATION - 2018

Monday, 2nd April, 2018 MATHEMATICS: US06CMTH04

(A	PROLUCT APPEN	ona - 4)			
•					- 1
Time : 10:00 a.m. to 1:00 n.m.			Maximum I	Marks :	70

Que.1 Fill in the blanks.

10

- (1) is a ring with zero divisor but not an integral domain .
 - (a) \mathbb{Z} (b) \mathbb{Q} (c) $M_2(\mathbb{R})$ (d) none of these
- (2) is regular element of \mathbb{Z}_9 .
 - (a) 3 (b) 4 (c) 6 (d) none of these
- (3) In ring $R=\{a+b\sqrt{-5}\ /\ a\ ,\ b\in\mathbb{Q}\ \}\ ,\ (-1+2\sqrt{-5})^{-1}=\dots$

(a)
$$\frac{1-2\sqrt{-5}}{21}$$
 (b) $\frac{-1-2\sqrt{-5}}{5}$ (c) $\frac{-1-2\sqrt{-5}}{21}$ (d) $\frac{-1+2\sqrt{-5}}{21}$

- (4) Quotient field of ring of Gaussian integer is
 - (a) \mathbb{Z} (b) \mathbb{Q} (c) $\mathbb{Z} + i \mathbb{Z}$ (d) $\mathbb{Q} + i \mathbb{Q}$
- (5) $Z/5Z = \dots$
 - (a) Z_5 (b) Z (c) Z_4 (d) 1/5
- (6) If I is ideal in ring R and a + I = I then
 - (a) a = 0 (b) a = I (c) $a \in I$ (d) none of these
- (7) In $R = \{a + b\sqrt{-5}/a, b \in \mathbb{Z}\}$, $1 + 2\sqrt{-5}$ is in R.
 - (a) not unit (b) not irreducible (c) prime (d) unit
- (8) In $\mathbb{Z} + i\mathbb{Z}$, gcd of 2 and -1 + 5i is
 - (a) 2+i (b) 2-i (c) i (d) 1-i
- (9) If R is field , $f(x), g(x) \in R[x]$ then deg(fg), deg(fg) = deg(fg)
 - (a) > (b) \leq (c) = (d) \geq
- (10) Let R be Euclidean domain, $a,b \in R$, a is proper divisor of b then d(b)......d(a).

(a) = (b)
$$\leq$$
 (c) $>$ (d) $<$

Que.2 Answer the following (Any Ten)

20

- (1) Prove that ring C[0,1] is ring with zero divisor under pointwise multiplication.
- (2) Prove that f(0) = 0, where $f: R \to R'$ be ring homomorphism.
- (3) Prove that $f: \mathbb{Z} \to \mathbb{Z}_n$ defined by $f(i) = \overline{i}$ is ring homomorphism .Is it one-one.?
- (4) Let R = C[0,1]. Prove that $I = \{x/x \in R, x(1/2) = 0\}$ is an ideal in R.

- (5) Find Z_6/I , where $I = \{\bar{0}, \bar{2}, \bar{4}\}.$ (6) Let I be any ideal in ring R and $p:R\to R/I$ be the projection map. If $J\supset I$ is ideal in R then prove that p(J) = J/I is ideal in R/I. (7) Prove that $4+3\sqrt{-5}$ is irreducible in the ring $\{a+b\sqrt{-5}/a, b\in Z\}$. (8) Prove that every Euclidean domain has unit element. (9) If R is ring with unit element 1 then prove that $Ra \subset Rb \Leftrightarrow b/a$. (10) Prove that any two elements of unique factorization domain have a gcd. (11) Let F be a field and $f(x) \in F[x]$ be a polynomial of degree n. Then prove that f(x) has at most n distinct roots in F. (12) Find content of f, where $f(x) = 2x^2 + (1+i)x - 2 \in R[x]$, where R = Z + iZ. Que.3 (a) Prove that Z_p is a field iff p is prime. 3 (b) Prove that the characteristic of every field is either 0 or prime . (c) Let $f: R \to R'$ be a ring homomorphism ,then prove that Kerf is subring of R and f(R) is subring of R'. OR Que.3 (d) Prove that $R = \left\{ \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix} / a, b, \in \mathbb{R} \right\}$ is a non-commutative ring without unit element. 5 (e) State and prove Cayley's theorem for rings. Que.4 (a) Prove that every field is a simple ring . State and prove under which condition converse hold . (b) Let R be any commutative ring with unit element 1, I be any ideal in R then prove that 5 (R/I,+,.) is a commutative ring with unit element 1+I. OR 5 Que.4 (c) State and prove First isomorphism theorem for ring. (d) Prove that every maximal ideal in a commutative ring with 1, is a prime ideal. Under which
- - condition converse hold? Verify it.

5

5

6

2

 2

- Que.5 (a) Let $R=\{a+b\sqrt{-5}/a,b\in Z\}$. Show that $\alpha\gamma$ and $\beta\gamma$ have no gcd in R , where $\alpha = 3$; $\beta = 1 + 2\sqrt{-5}$; $\gamma = 7(1 + 2\sqrt{-5})$.
 - (b) Prove that every principal ideal domain is factorization domain.

OR

- Que.5 (c) Prove that every prime element is irreducible in integral domain with unit element 1. Does the converse hold? Verify it.
 - (d) Prove that any two elements of principal ideal domain have a gcd.
 - (e) Find gcd of 2+3i and 4+7i in ring $\mathbb{Z}+i\mathbb{Z}$.

Que.6	Que.6 (a) State and prove Gauss theorem.	
	(b) Let R be a unique factorization domain . Then prove that the product of two primitive polynomials over R is also a primitive polynomial.	5
	OR	
Que.6	(c) If F is field then prove that F[x] is a unique factorization domain.	5
	(d) If every irreducible element is prime in factorization domain R ,then prove that R is a unique factorization domain.	Э Б