Answer any TEN of the following.

[1] Show that the sets $\mathbb R$ and \emptyset are $\mathcal U$ -open

Q: 2.

[2] Define: (i) Indiscrete Topology (P.T.O.) Page 1 of 3

(ii) Closed Set

[3] For a set $X = \{1,2,3\}$ give a closed subset of X relative to the topologous $\{\emptyset, X, \{1\}, \{2,3\}\}$. Is that open also?	gy
[4] Let (X, \mathcal{T}) be a topological space. Find the set of all the cluster points of the empty subset of X	ne
[5] Let (X, \mathcal{T}) be a topological space. Prove that if F is \mathcal{T} -closed subset of X an $p \in (X \sim F)$ then there is a \mathcal{T} -neighbourhood N of p such that $N \cap F = \emptyset$	ıd
[6] Define: (i) Interior of a set (ii) Bicontinuous function	
[7] For $X = \{a, b, c\}$ consider the topology $\mathcal{T} = \{X, \emptyset, \{a, b\}, \{c\}\}$. Is (X, T) connected?	")
[8] Prove that indiscrete space is connected	
[9] State the Least Upper Bound property of R	
[10] Is every discrete space a T_1 space also? Why?	
[11] Prove that every Hausdorff space is T_1 -space	
[12] Prove that the space (R, \mathcal{U}) is a T_2 -space.	
Q: 3 [A] Show that discrete topology satisfies all the conditions for becoming a topological space	5
 [B] Let \$\mathcal{G}\$ be a family of subsets of \$\mathbb{R}\$ as described below (i) \$\mathcal{Q} \in \mathcal{G}\$ (ii) If \$G \in \mathbb{R}\$ and \$G \neq \mathcal{Q}\$ then \$G \in \mathcal{G}\$ if for each \$p \in G\$ there is a set \$H = {x \in \mathbb{R}/a \leq x < b}\$ for some \$a < b\$ such that \$p \in H \in G\$. Prove that \$\mathcal{G}\$ is an unusual nontrivial topology of \$\mathbb{R}\$ 	5
OR	J
Q: 3 [A] If $X = \{a, b, c\}$ then find three topologies \mathcal{T}_1 , \mathcal{T}_2 and \mathcal{T}_3 for X such that $\mathcal{T}_1 \subsetneq \mathcal{T}_2 \subsetneq \mathcal{T}_3$. Also find three more topologies for X which are non-comparable with each other.	5
[B] Prove that finite union and arbitrary intersection of closed sets in a topological space are closed.	5
Q: 4 [A] Let (X, \mathcal{T}) be a topological space and A be a subset of X. Prove that $A \cup A'$ is \mathcal{T} -closed	5
[B] Let (X, \mathcal{T}) be a topological space and $A \subset X$. Prove the following (i) A is \mathcal{T} -open iff $Int(A) = A$ (ii) $Int(A)$ is the largest open subset of A	5

Q: 4.	If (X, \mathcal{T}) and (Y, Ψ) are topological spaces and f is a mapping from X into Y then prove that the following statements are equivalent (a) The mapping f is continuous (b) The inverse image of f of every Ψ -closed set is \mathcal{T} -closed set (c) If $x \in X$ then inverse image of every Ψ -neighbourhood of $f(x)$ is a \mathcal{T} -neighbourhood of x (d) If $x \in X$ and N is a Ψ -neighbourhood of $f(x)$, then there is a \mathcal{T} -neighbourhood $f(x)$ and $f(x)$ is a $f(x)$ -neighbourhood $f(x)$.	10
	(e) If $A \subset X$, then $f(A^{-}) \subset f(A)$	10
	If (Y, \mathcal{T}_Y) is a compact subspace of a Hausdorff space (X, \mathcal{T}) , then prove that Y is \mathcal{T} closed.	5
{B	Let (X, \mathcal{T}) be a topological space and let Y be a subset of X . Prove that if the subspace (Y, \mathcal{T}_Y) is connected then so is the subspace (Y^-, \mathcal{T}_{Y^-}) .	5
	OR	
Q: 5.	Define a connected space and prove that the space (R, \mathcal{U}) is connected.	10
Q: 6 [A	A] If Y is a bounded and \mathcal{U} -closed subset of R, then prove that (Y, \mathcal{U}_Y) is compact.	5
[]	B] If (X, \mathcal{T}) is compact and A is an infinite subset of X, then prove that A has at least one cluster point in X.	5
OR		
Q: 6 [A] If (X, \mathcal{T}) is a compact space, and if f is a $\mathcal{T} - \psi$ continuous mapping of X into R , then prove that f is bounded.	5
ļ	[B] Prove that every compact Hausdorff space is a T_3 -space.	5

