Answer any TEN of the following. [1] Show that the sets $\mathbb R$ and \emptyset are $\mathcal U$ -open Q: 2. [2] Define: (i) Indiscrete Topology (P.T.O.) Page 1 of 3 (ii) Closed Set | [3] For a set $X = \{1,2,3\}$ give a closed subset of X relative to the topologous $\{\emptyset, X, \{1\}, \{2,3\}\}$. Is that open also? | gy | |---|----| | [4] Let (X, \mathcal{T}) be a topological space. Find the set of all the cluster points of the empty subset of X | ne | | [5] Let (X, \mathcal{T}) be a topological space. Prove that if F is \mathcal{T} -closed subset of X an $p \in (X \sim F)$ then there is a \mathcal{T} -neighbourhood N of p such that $N \cap F = \emptyset$ | ıd | | [6] Define: (i) Interior of a set (ii) Bicontinuous function | | | [7] For $X = \{a, b, c\}$ consider the topology $\mathcal{T} = \{X, \emptyset, \{a, b\}, \{c\}\}$. Is (X, T) connected? | ") | | [8] Prove that indiscrete space is connected | | | [9] State the Least Upper Bound property of R | | | [10] Is every discrete space a T_1 space also? Why? | | | [11] Prove that every Hausdorff space is T_1 -space | | | [12] Prove that the space (R, \mathcal{U}) is a T_2 -space. | | | Q: 3 [A] Show that discrete topology satisfies all the conditions for becoming a topological space | 5 | | [B] Let \$\mathcal{G}\$ be a family of subsets of \$\mathbb{R}\$ as described below (i) \$\mathcal{Q} \in \mathcal{G}\$ (ii) If \$G \in \mathbb{R}\$ and \$G \neq \mathcal{Q}\$ then \$G \in \mathcal{G}\$ if for each \$p \in G\$ there is a set \$H = {x \in \mathbb{R}/a \leq x < b}\$ for some \$a < b\$ such that \$p \in H \in G\$. Prove that \$\mathcal{G}\$ is an unusual nontrivial topology of \$\mathbb{R}\$ | 5 | | OR | J | | Q: 3 [A] If $X = \{a, b, c\}$ then find three topologies \mathcal{T}_1 , \mathcal{T}_2 and \mathcal{T}_3 for X such that $\mathcal{T}_1 \subsetneq \mathcal{T}_2 \subsetneq \mathcal{T}_3$. Also find three more topologies for X which are non-comparable with each other. | 5 | | [B] Prove that finite union and arbitrary intersection of closed sets in a topological space are closed. | 5 | | Q: 4 [A] Let (X, \mathcal{T}) be a topological space and A be a subset of X. Prove that $A \cup A'$ is \mathcal{T} -closed | 5 | | [B] Let (X, \mathcal{T}) be a topological space and $A \subset X$. Prove the following (i) A is \mathcal{T} -open iff $Int(A) = A$ (ii) $Int(A)$ is the largest open subset of A | 5 | | Q: 4. | If (X, \mathcal{T}) and (Y, Ψ) are topological spaces and f is a mapping from X into Y then prove that the following statements are equivalent (a) The mapping f is continuous (b) The inverse image of f of every Ψ -closed set is \mathcal{T} -closed set (c) If $x \in X$ then inverse image of every Ψ -neighbourhood of $f(x)$ is a \mathcal{T} -neighbourhood of x (d) If $x \in X$ and N is a Ψ -neighbourhood of $f(x)$, then there is a \mathcal{T} -neighbourhood $f(x)$ and $f(x)$ is a $f(x)$ -neighbourhood $f(x)$. | 10 | |---------|--|----| | | (e) If $A \subset X$, then $f(A^{-}) \subset f(A)$ | 10 | | | If (Y, \mathcal{T}_Y) is a compact subspace of a Hausdorff space (X, \mathcal{T}) , then prove that Y is \mathcal{T} closed. | 5 | | {B | Let (X, \mathcal{T}) be a topological space and let Y be a subset of X . Prove that if the subspace (Y, \mathcal{T}_Y) is connected then so is the subspace (Y^-, \mathcal{T}_{Y^-}) . | 5 | | | OR | | | Q: 5. | Define a connected space and prove that the space (R, \mathcal{U}) is connected. | 10 | | Q: 6 [A | A] If Y is a bounded and \mathcal{U} -closed subset of R, then prove that (Y, \mathcal{U}_Y) is compact. | 5 | | [] | B] If (X, \mathcal{T}) is compact and A is an infinite subset of X, then prove that A has at least one cluster point in X. | 5 | | OR | | | | Q: 6 [| A] If (X, \mathcal{T}) is a compact space, and if f is a $\mathcal{T} - \psi$ continuous mapping of X into R , then prove that f is bounded. | 5 | | ļ | [B] Prove that every compact Hausdorff space is a T_3 -space. | 5 | | | | |