(51/A18]

SARDAR PATEL UNIVERSITY

B.Sc. (SEMESTER - VI) EXAMINATION-2018

March 28, 2018, Wednesday 10:00 a.m. to 1.00 p.m. US06CMTH02(Complex Analysis)

Maximum Marks: 70

Q.1 Choose the correct option in the following questions, mention the correct option in the answerbook.

[10]

(1) Domain of $f(z) = \frac{z}{z^4 - 1}$ is (a) $\mathbb{C} - \{\pm 1\}$

(c) $\mathbb{C} - \{\pm 1, \pm i\}$

(a) $\mathbb{C} - \{\pm 1\}$ (b) $\mathbb{C} - \{0, \pm i, \pm 1\}$ (c) Cartesian form of $f(z) = z^2 - 5i\bar{z}$ is $f(z) = \dots$

(b) $f(z) = (x^2 - y^2 - 5y) + i(2xy - 5x)$ (d) $f(z) = (x^2 - y^2 + 5y) + i(2xy + 5x)$

(a) $\lim_{z\to 0} \frac{1}{f(z)}$

(b) $\lim_{z \to z_0} \frac{1}{f(z)}$ (c) $\lim_{z \to \infty} \frac{1}{f(z)}$ (d) $\lim_{z \to z_0} f\left(\frac{1}{z}\right)$

(4) If $f(z) = 2x^2 + i4xy$ then f is differentiable at

(b) $\{z \in \mathbb{C}/Im(z) = 0\}$

(c) $\{z \in \mathbb{C}/Re(z) = 0\}$

(d) none of these

(5) If $u(x,y) = 2x - x^3 + 3xy^2$ then.....

 $(a) u_{xx} + u_{yy} = 0$

 $(b) u_{xx} + u_{yy} = 1$

 $(c) u_{xx} + u_{xy} = 0$

(d) none of these.

(b) $\mathbb{C} - \{\sqrt{3}, i\}$ (c) $\mathbb{C} - \{\sqrt{3}, \pm i\}$

(d) none of these

(7) $\sinh(2\pi i) = \dots$ (b) 1

(a) 0

(d) -1

(8) $\exp z$ $\forall z \in \mathbb{C}$.

(b) ≥

(c) =(d) ≠

(9) Image of a horizontal strip 3 < x < 7 under the transformation w = iz is

(a) 3 < u < 7(10) Fixed point of $w = \frac{z-1}{z+1}$ are

(b) 3 < v < 7

(c) i

(c) v < u

 $(d) \pm 1$

Q.2 Attempt any Ten:

[20]

- (1) Prove that limit of function is unique, if it exist.
- (2) Represent the region 3 < |z 5i| < 7 graphically in complex plane.
- (3) Using definition of limit, show that $\lim_{z\to z_0} c=c$, where c is complex constant.
- (4) Define: Analytic function, Entire function.
- (5) Show that $u(x,y) = 3x^2y y^3$ is harmonic in some domain of complex plane.
- (6) Show that $f(z) = e^{ix+y}$ is nowhere analytic.
- (7) Find all values of z such that $e^z = -1 + i\sqrt{3}$.
- (8) Prove that $\cos^2 z + \sin^2 z = 1$.
- (9) Evaluate log(e⁴i).

- (10) Find fixed points of the transformation $w = \frac{z-4}{z-3}$.
- (11) Define Bilinear transformation. Is $T(z) = \frac{4z-6}{6z+9}$ a Bilinear transformation?
- (12) Find the image of 1 < y < 4 under the transformation w = -5z. Also sketch the region.

Q.3

- (a) If f and g are differentiable then prove that fg is differentiable and (fg)'(z) = f(z)g'(z) + f'(z)g(z). [05]
- (b) By using definition of limit prove that $\lim_{x\to 2i} (2x+iy^2) = 4i$. [05]

OR

Q.3

- (c) State and prove chain rule for differentiation of composite functions. [06]
- (d) Prove that every differentiable function is continuous. Does the converse hold? Verify it. [04]

Q.4

- (a) Prove that f'(z) and f''(z) exist everywhere and find f''(z) for $f(z) = e^{-z}$.
- (b) Let f(z) = u(x, y) + iv(x, y) and f'(z) exist at $z_0 = x_0 + iy_0$. Prove that the first order partial derivatives of u and v must exist at (x_0, y_0) and they satisfies the Cauchy-Reimann equations $u_x = v_y$, $u_y = -v_x$ at (x_0, y_0) . Also prove that $f'(z) = u_x + iv_x$ where u_x and v_x are evaluated at (x_0, y_0) .

OR

Q.4

- (c) If f'(z) = 0 everywhere in domain D then prove that f(z) must be constant throughout the domain D. [05]
- (d) Prove that $u(x, y) = x^3 3xy^2$ is harmonic in some domain and find a harmonic conjugate v(x, y) for u(x, y). [05] Also find corresponding analytic function f(z).

Q.5

- (a) Prove that: $\sin^{-1} z = -i\log[iz + \sqrt{1-z^2}]$. Hence find $\sin^{-1} 1$
- (b) Prove that $\sin z = 0$ iff $z = n\pi$, $n \in \mathbb{Z}$.

 \mathbf{OR}

Q.5

- (c) Prove that $\tanh^{-1} z = \frac{1}{2} \log \left[\frac{1+z}{1-z} \right]$. [05]
- (d) Prove the following: (i) $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2$. (ii) $2 \cos z_1 \sin z_2 = \sin(z_1 + z_2) - \sin(z_1 - z_2)$.

Q.6

- (a) Find the image of rectangle $0 \le x \le 1$, $0 \le y \le 2$ under the transformation w = (i+1)z + 2. Also sketch [05] rectangle and its image.
- (b) Find linear fractional transformation that maps the points $z_1=-i$, $z_2=0$, $z_3=i$ onto $w_1=-1$, $w_2=i$, $w_3=1$. [05]

OR

0.6

- (c) Prove that all linear fractional transformation that maps the upper half plane Imz > 0 on to the open disk |w| < 1 and the boundary Imz = 0 on to the boundary of |w| = 1 is given by $w = e^{i\alpha} \left[\frac{z z_0}{z \overline{z_0}} \right]$, $(Imz_0 > 0)$.
- (d) Find the image of the line $\leq y \leq 1/2$ under the transformation w = 1/z. Show it graphically. [03]

