No. of pages: 02

[22/A-9]

SARDAR PATEL UNIVERSITY B.Sc. EXAMINATION (SEM-VI) APRIL-2018 PHYSICAL CHEMISTRY

PHYSICAL CHEMISTRY US06CCHE06

	06/04/2018 (Friday)	70			
TIME: 1	.0.00 to 1.00 PM Marks				
Q-1	Choose one most appropriate option out of four provided to you.	(10)			
(i)	Which of the following is used for elucidating the mechanism of complex				
	reaction?				
	(a) The equilibrium approximation (b) the steady state approximation				
	(c) Both a and b (d) None of these				
(ii)	At a given temperature, if activation energy is very high then the rate of				
	reaction will be				
	(a) Medium (b) Fast (c) Slow (d) Very high				
(iii)	The reaction coordinate which have maximum potential energy is called				
	(a) Simple complex (b) Ionic complex (c) Catalytic complex (d) Activated complex				
<i>(</i> ;)	(c) Catalytic complex (d) Activated complex				
(iv)	The symmetry number for HCl and HCN is (a) 1 (b) 2 (c) 3 (d) 4				
(c. 1)	(a) 1 (b) 2 (c) 3 (d) 4 The rotational energy of the molecule depends on of the molecule.				
(v)					
	(a) Molar mass (b) Moment of Inertia (c) Stiffness of bond (d) Size of container				
/v.#\	The degeneracy of J^{th} rotational energy level is given by g_j =				
(vi)	(a) 2J+1 (b) 2J-1 (c) J=1 (d) J-1				
(vii)	Electrochemical detector belongs to				
(VII)	(a) Bulk property (b) universal				
	(a) Bulk property (b) universal (c) Solute property (d) Selective				
(viii)	Which of the following solvent is expected to have maximum compressibility				
(*,	factor?				
	(a) n-pentane (b) n-hexane (c) n-heptane (d) n-octane				
(ix)	When oxalic acid is shaken with ether and water, it in water.				
()	(a) Associates (b) Dissociates				
	(c) Remains same (d) Remains unaffected				
(x)	When the solute undergoes association in one of the solvent then the Nernst				
` '	distribution law is modified as				
	(a) $C_1 = C_2^{\frac{1}{2}} \times K$ (b) $C_2^{\frac{1}{2}} \times C_1 = K$				
	(c) $C_1 = K \times C_2^2$ (d) $C_1 = K \times C_2^3$				
Q-2	Give answers of any ten questions.	(20)			
(i)	Explain Franck-Rabinovich effect.				
(ii)	Suggest a probable mechanism for the reaction: $Hg_2^{+2} + TI^{+3} \rightarrow 2Hg^{+2} + TI^{+}$				
(iii)	Can the activation energy of a reaction be zero or negative? Why?				
(iv)	State assumptions involved in Boltzmann distribution law.				
(v)	Define: Thermal energy, Degeneracy of energy levels				
(vi)	Give the importance and limitations of Boltzmann distribution law.				
(vii)	What are the most important advantages of UV detector?				
(viii)	Describe any two types of column packing in HPLC.				
(ix)	Enlist the different stationary phase used in HPLC.				
(x)	What are the limitations of distribution law? Write the characteristics of liquid which can be proved as good extractant.				
(xi)	Name the factors that promote rate and selectivity of an extraction process.				
(xii)	name the ractors that promote rate and selectivity of an extraction process.				

				Olipe to an College	(5)		
Q-3 (a)							
	(i)	Br ₂	k _i	2Br			
	(ii)	Br∔H₂		HBr + H			
	(iii)	H + Br ₂		HBr + Br			
	(iv)	H + HBr	K4 →	H ₂ + Br			
				Br_2 and steady state approximation for [H] and [Br], derive on for the formation of HBr.			
(b)	Discu	ss the acti	vated	complex theory for bimolecular gaseous reaction. OR	(5)		
)-3 (a)	Discuss the kinetics of opposing reaction in which the forward as well as backward reactions are both first order.						
(b)				n theory of unimolecular reaction.	(5)		
2-4 (a)	Derive equations for partition function of one dimensional and three dimensional translational motions.						
(b)				partition function and thermal energy of rotational motion.	(5)		
				OR	(5)		
-4 (a)							
(b)	temperature. Enlist the molecular properties on which these different energies						
-5	depend. Draw the schematic diagram of HPLC. Give principle, apparatus and ba functions of each part of HPLC.						
				OR			
-5	Discuss the effect of temperature on HPLC. Also give the advantages and (applications of HPLC.						
)-6 (a)		ss briefly traction.	the va	rious factors that are responsible for affecting the process	(5)		
(b)	How	many time	es the	dCl_2 in tri-n-butyl-phosphate (TBP) towards 3M HCl is 2.3. extraction should be carried out using 5 ml TBP each time l_2 from 15 ml 3M HCl solution?	(5)		
				OR			
Q-6 (a)				patch extraction and continuous extraction. Give the textraction.	(5)		
(b)	In pr meth Y is !	esence of ylenechlor 5% extrac	dithio ide to ted. C	vane at PH=6, a metal X gets 95% extracted with v ml of V ml of aqueous solution. Under the same condition metal calculate the efficiency of separation of metal X and Y. If chloride and aqueous solution is same.	(5)		