Date: 04-04-2016, Monday

Total Marks: 70

10

SARDAR PATEL UNIVERSITY

BSc Examination 2016

Semester: VI

Subject: Physics Course: US06CPHY04

Electrodynamics and Plasma Physics

Time: 02.30 pm to 05.30 pm

INSTR	RUCTIONS:				
1 2	Attempt all questions.				
3	The symbols have their usual meaning. Figures to the right indicate full marks.				
Q-1	Multiple Choice Questions: [Atten	npt all]			
(i)	The dipole moment per unit volume is called				
	(a) Polarization	(b) Ionization			
	(c) Magnetization	(d) Distortion			
(ii)	The electric displacement is given as	s			
	(a) $D = -\nabla \times E$	(b) $D = -\nabla \times E + V$			
	(c) $D = \epsilon_0 E + P$	(d) $D = P - \epsilon_0 V$			
(iii)	is a polar molecule.	0			
	(a) O ₂	(b) H ₂ O			
	(c) CO ₂	(d) H ₂			
(iv)	The torque on a magnetic dipole is g	given as			
	(a) $N = m \cdot B$	(b) $N = m \times B$			
	(c) $N = m \cdot P$	(d) $N = m \times P$			
(v)	The auxiliary field is				
	$(a) H = \frac{1}{\mu_0} B - M$	(b) $H = \frac{1}{\mu_0}(B - M)$ (d) $H = \mu_0(B - M)$			
	(c) $H = \mu_0 B - M$	(d) $H = \mu_0 (B - M)$			
(vi)	The trajectory of a charged particle i	in the $\mathbf{E} \perp \mathbf{B}$ field is a			
	(a) Linear	(b) Elliptical			
	(c) Helix	(d) Circular			
(vii)	The magnetic moment of the gyratin	ng particle to be			
	(a) $\mu = \frac{1}{2} m v_{\perp}^2 / B$	(b) $\mu = mv_{\perp}^2 / B$			
	(c) $\mu = -\frac{1}{2} m v_{\perp}^2 / B$	(d) $\mu = -mv_{\perp}^2 / B$			
(viii)	The conversion factor in plasma is 1	eV =°K.			
	(a) 11600	(b) 16100			
	(c) 1160	(d) 1610			
(ix)	The neutral fluid will interact with th	ne ions and electrons only through			
	(a) Mixing	(b) Pressure			
	(c) Reaction	(d) Collision			
(x)	The fluid theory is a good approxima	ation for motions perpendicular to			
	(a) E	(b) E x B			

(d) None of these

(c) B

Q-2	Ans	Answer the following questions in short. (Attempt any ten)				
(1)	Wr	ite Poisson's equation. When Poisson's equation reduces to Laplace's	20			
	equ	ation?				
(2)	Wr	Write Laplace's equation in the spherical coordinates.				
(3)	Find the capacitance of two concentric spherical metal cells, with radii a and b.					
(4)	Explain magnetization.					
(5)	Deduce Faraday's law.					
(6)	Define electromotive force.					
(7)	Define Plasma.					
(8)	Give the three conditions must be satisfy by the plasma.					
(9)	Wri field	te equation of the drift and net current density of plasma in the gravitational l.				
(10)	Which phenomenon is called Langmuir's Paradox?					
(11)	Give the equation of convective derivative.					
(12)	Enli	st the assumptions to derive an expression for plasma frequency.				
Q-3	(a)	Define conductor and discuss basic properties of conductor in detail.	6			
	(b)	Derive the equation for the electrostatic pressure at any point on a charge conductor.	4			
		OR				
Q-3	(a)	Discuss bound charges and show that total potential is given as	6			
		$V(r) = \frac{1}{4\pi\epsilon_0} \oint \frac{\sigma_b}{r} da' + \frac{1}{4\pi\epsilon_0} \oint \frac{\rho_b}{r} d\tau'.$				
	(b)	Write a note on induced dipoles.	4			
Q-4		Define diamagnets, paramagnets and ferromagnets. Discuss the effect of a magnetic field on atomic orbits in detail and show that a change in the	10			
		orbital speed (i.e. the change in dipole moment) is $\Delta m = -\frac{e^2 R^2}{4m_e} B$.				
		OR				
Q-4		Derive expression of vector potential for a piece of magnetized material in terms of bound currents J_b and K_b . Give the physical interpretation of bound currents.	10			
Q-5	(a)	Discuss Debye's shielding in detail.	6			
	(b)	Enlist the applications of plasma physics.	4			
		OR	•			
Q-5	(a)	Discuss motion of a single charged particle in the uniform magnetic field B.	6			
		Obtain the expression for the Larmor radius.	~			
	(b)	Write a note on Grad-B drift.	4			
Q-6	(a)	Discuss fluid drift perpendicular to magnetic field B .	6			
	(b)	Write notes on (i) equation of continuity and (ii) equation of state.	4			
		OR				
Q-6	(a)	Define plasma frequency and derive expression for the plasma frequency.	6			
	(b)	Derive expression for the velocity of sound waves in a neutral plasma.	4			