[A-86] SADAR PATEL UNIVERSITY Sixth Semester B. Sc. Examination - 2016 Monday, 28th March, -2016

Time: 2:30pm to 5:30 pm

PHYSICS: <u>US06CPHY01</u>(Quantum Mechanics)

Total Marks: 70

Note: All the symbols have their usual meaning	Note:	All the	symbols	have their	usual	meaning
--	-------	---------	---------	------------	-------	---------

Que-1		Choose correct option to answer the question.	[10]
(1		According to de-Broglie hypothesis the relation between energy of a particle and frequency of associated wave is E= (a) $\hbar \nu$ (b) $\hbar \omega$ (c) $\hbar^2 v^2$ (d) $\hbar v$	
(2		Energy momentum relation is given by $E=$ (a) $\frac{p^2}{2m}$ (b) mv^2 (c) $\frac{1}{2}mv^2$ (d) $\frac{p}{2m}$	
(3	-	Total probability of finding a particle in space is (a) zero (b) One (c) infinity (d) one third	
(4		For a bound state of a particle energy E (a) < 0 (b) = 0 (c) > 0 (d) = ∞	
(5		In the time independent Schrodinger equation $Hu(x) = Eu(x)$, E is called (a) heat energy (b) potential eigen value (c) energy eigen value (d) potential	
(6		Each dynamical variable in quantum mechanics is represented by (a) a number (b) non-linear operator (c) gradient of vector (d) linear operator	
(7	7)	Expectation value of a self adjoint operator is	
3)	B)	(a) real (b) infinite (c) imaginary (d) always0 If $\delta_{m,n}$ is Kronecker delta function then $\delta_{m,n}=1$ when (a)) $m>n$ (b) $m=n$ (c) $m< n$ (d) $m\neq n$	
(9	9)	Hamiltoniam operator for a simple harmonic oscillator is $H = $ (a) $\frac{p^2}{2m} + \frac{1}{2}kx^2$ (b) $\frac{p^2}{2m}$ (c) $\frac{1}{2}kx^2$ (d) $\frac{p^2}{2m} + kx$	
(1	10)	Energy eigen value of an oscillator is given by $E = $ (a) $\hbar \nu$ (b) $n\hbar \nu$ (c) $\left(n + \frac{1}{2}\right)\hbar \omega$ (d) $\hbar \omega$	

Also briefly discuss parity of eigenfunctions.

show that in a square well potential energy levels are finite and discrete.

- Que-5 (a) Show that the eigen function belonging to discrete eigen values are [06] normalizable and the eigen functions belonging to continuous eigenvalues are of infinite norm.
 - (b) Discuss the physical interpretation of eigen values and eigen functions [04]
- Que-5 (a) Explain uncertainty principle for quantum mechanical observables and [06] show that the product of uncertainty in observables is of the order of commutator.
 - (b) Obtain eigen function in momentum space and discuss box normalization [04]of this momentum eigen function.
- Que-6 Obtain dimensionless Schrodinger equation for a simple harmonic (a) [06] oscillator as:

$$\frac{d^2u}{d\rho^2} + [\lambda - \rho^2]u = 0$$

And write down an expression for its energy eigen value.

(b) Write down the expression of Hamiltonian of an anisotropic oscillator in [04] three dimension and obtain the Schrodinger equation as

$$\nabla^2 u + \frac{2m}{h^2} [E - V(r)] u = 0.$$

OR Obtain operator form of L^2 in terms of spherical polar coordinates Que-6 (a) [06]

$$L^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]$$

(b) Define central potential and obtain Schrodinger equation for a system of [04] two particle moving in such a potential field.