VALLABH VIDYANAGAR

B.SC SEM-VI

SUB: MATHEMATICS		S Course	Course No: US06CMTH04 (Abstract Algebra-II)			
DAT	E: 04/04/2016		TIME: (02:30 PM TO 05:30	PM	
Marl	ks: 70					
	Select correct options in your answer book is a non-commutative ring.				[10]	
	(a) Z	(b) Q	(c) $M_2(\mathbb{R})$	(d) none of these		
(2)	G.C.D. of 2+3i and 4+7i is					
(3)	(a) i is field.	(b) −1	(c) 1	(d) — i		
	(a) Q	(b) Z	(c) $M_2(\mathbb{R})$	(d) all of these		
(4)		ring of Gaussian i		(d) ©		
(5)	is sub ring o	of Q.				
	(a) 0	(b) Z	(c) { ±1}	(d) N		
(6)	If I is ideal in ring R then unit element of R/ I is $__$.					
	(a) 0	(b) 1	(c) R	(d) 1+ I		
(7)	Let R be any ring, $f(x) \in R[x], \alpha \in R$ is said to be root of $f(x)$ if $f(x) = $					
(8)	(a) 1 If F is field, f(x)	(b) 2 $\in F[x], \alpha \in F$ is a	c) - root of f(x) then			
	$(a)(X-\alpha)/f(x)$	(b) $(x + a) / f(x)$	(c) $f(x) / (x - x)$	α) (d) f(x) /(x+ α)		
(9) (10)	Every is principal ideal domain. (a) Integral domain (b) ring (c) field (d) Euclidean domain Every irreducible element in unique factorization domain is					
(10)	•					
Q:2	(a) unit Answer the follo	(b) not unit. wing in short. (At	() !	(d) not unit n)	[20]	
(1)	Define Ring.					
(2)	Define Embedded ring and Kernal of homomorphism					

For prime p, prove that $Z_{\mathfrak{p}}$ is a field. (3)Find Quotient field of Z. (4)Prove that $\{0, 3\}$ is an ideal in Z_{ϵ} . (5) Let $f: R \rightarrow R'$ be any ring homomorphism, then prove that Ker (f) is (6) an ideal in R. Define Euclidean Domain. (7) Prove that 1+ i is irreducible in Z+ iZ. (8)Let R = $\{a+b\sqrt{-5}: a, b \in Z\}$, then prove that $1+2\sqrt{-5}$ and 3 are (9)relatively prime. Find all roots of $X^3 + 5X$ in Z_6 . (10)If p is prime and n>1 then prove that $X^n-p \in Z[x]$ is irreducible. (11)Find Content of the $f(x) = 3X^3 - 2X^2 + 6X + 9 \in Z[x]$, where R = Z + iZ. (12)Q. 3 Show that $(\mathbb{Z}_{n}+,\cdot)$ forms a ring. Is it commutative? [05] (a) Prove that every field is an Integral domain. Does the converse hold? [05] (b) Verify it. OR Q. 3 Prove that every finite Integral domain is field. [05] (c) [05] State and prove Cayley's theorem for ring. (d) Q. 4 [05] Prove that every field is simple ring. (a) State and prove first isomorphism theorem for ring. [05] (b) Q. 4 Prove that P is prime ideal of \mathbb{Z} iff either P = 0 or P = $p \mathbb{Z}$ for some [05] (c) prime number p. Prove that an ideal P in commutative ring R is a prime ideal iff R/p is (d) an integral domain. Q. 5 Show that the Ring of Gaussian integers is Euclidean domain. [05] (a) [05] Prove that every Euclidean domain is factorization domain. (b) OR Q. 5 Prove that every principal ideal domain is factorization domain. [05] (c) Prove that every Euclidean domain is principal ideal domain. [05] (d)

(a) State and prove Gauss lemma. [06]
 (b) Let R be a unique factorization domain. Then Prove that product of two primitive polynomials over R is also a primitive polynomial. OR
 (c) State and prove Eisenstein's criterion. [06]
 (d) Let F be afield and f(x) ∈ F(x) be a polynomial of degree n. Prove [04] that f(x) has at most n distinct roots in F.

X=X=X