(12) Define: T₁ - space ## SARDAR PATEL UNIVERSITY ## B.Sc. (SEM-VI) Examination(Regular & NC) ## Friday, 1st April-2016 USO6CMTHO3 (Topology) Time: 2:30 P.M. TO 5:30 P.M. Maximum Marks: 70 Note: Figures to the right indicate marks to the questions. | Q.1 | and the correct choice from the given ontions | [10] | |------|---|------| | (1) | is neither u-open nor u-closed. | [10] | | (2) | (a) (2,9) (b) [2,9] (c) [2,9) (d) none | | | (2) | Intersection of closed set is closed. | | | (3) | (a) Finite (b) Arbitrary (c) Infinite (d) none | | | (3) | Let (X, τ) be a topological space. A subset F of x is τ -closed if X-F τ . | | | (4) | $(a) \not\leftarrow (b) \subset (c) \not\in (d) \in$ | | | (4) | Two topological spaces are said to be topologically equivalent iff they are | | | (5) | (a) continuous (b) not continuous (c) homeomorphic (d) not homeomorphic is not a cluster point of (-2, 9) in (\mathbb{R}, u) . | | | (0) | (a) -3 (b) -2 (c) 0 (d) 9 | | | (6) | In (X, τ) , if $A \subset X$ then Int(A) is the subset of A. | | | | (a) Smallest 7 -closed (b) largest 7 -closed (c) amallast 7 | | | (7) | (a) Smallest τ -closed (b) largest τ -closed (c) smallest τ -open (d) largest τ -open let t_1 and t_2 be any two open intervals then (t_1, t_2, t_3) and (t_3, t_4) | | | | Let l_1 and l_2 be any two open intervals then (l_1, u_{l_1}) and (l_2, u_{l_2}) are | | | (8) | (a) Isomorphic (b) Homeomorphic (c)not Homeomorphic (d) none (2, 5) is in its relativized u-topology. | | | . , | (a) connected (b) disconnected (c) compact (d) none. | | | (9) | Which of the following is not true for topological spaces? | | | | (a) Every T ₃ -space is T ₂ -space (b)Every T ₂ -space is T ₁ -space | | | | (c) (\mathbb{R}, u) is a T_2 -space (d) Every T_1 -space is T_2 -space | | | (10) | Every is compact in its relativized u-topology. | | | | (a) [a, b) (b) (a, b] (c) [a, b] (d) (a, b) | | | Q.2 | Answer ANY TEN of the following: | [20] | | (1) | Show that $(-1, 3) \cup (6, 7)$ is u- open set. | [20] | | (2) | Prove that $\{a\}$ is closed set in (\mathbb{R}, u) if $a \in \mathbb{R}$. | | | (3) | Find X and τ for which (X, τ) is not a topological space. | | | (4) | Define: Dense set. | | | (5) | Check whether 1 is an interior point of [0, 1] in (\mathbb{R}, u) or not. | | | (6) | Define: continuous mapping in topological space. | | | (7) | | | | (8) | For X={a,b,c}, Determine whether $\tau = \{\emptyset, X, \{c\}, \{a,b\}\}\$ is connected or disconnected. | | | (9) | Let (\mathbb{R}, u) be a topological space. Show that u is a Hausdroff topology for R . If (X, τ) is a Hausdroff space and $p \in X$ then prove that $\{p\}$ is τ – closed set. | | | (10) | Define: Regular space Then prove that $\{p\}$ is $T - closed$ set. | | | (11) | Prove that every T_2 –space is T_1 –space. | | | Q.3 | | | | |------------|--|------------|--| | | Define: Door Space. Give an example of a space which is door space and one example of a space which is not Door space. Justify your answer. OR | [10] | | | | | | | | Q.3 | Define: Coarser Topology, Finer Topology, Non-comparable topologies . Give an example of each. Justify your answer. | [10] | | | Q.4 | | | | | (a)
(b) | Let (X, τ) be a topological space and $A \subset X$ then prove that $Int(A)$ is τ –open set. If (X, τ) and (Y, ψ) are topological spaces and $f: X \to Y$ is a continuous mapping then prove that inverse image of every ψ – nbhd of $f(x)$ is τ – nbhd of x ; $x \in X$. | [5]
[5] | | | | OR | | | | Q.4 | | | | | (a) | Let (X,τ) be a topological space and $A \subset X$ then prove that A is τ -open set iff $Int(A) = A$. | [5] | | | /L\ | · · · · · · · · · · · · · · · · · · · | | | | (b) | If (X,τ) and (Y,ψ) are topological spaces. If the inverse image of f of every ψ —closed set is τ —closed set then prove that the mapping f is continuous. | [5] | | | Q.5 | | | | | (a) | If a topological space (X,τ) has a non-empty proper subset A that is both τ —open and τ —closed then prove that (X,τ) is disconnected. | [5] | | | (b) | Prove that a continuous image of a connected space is connected. | [5] | | | 0.5 | OR | | | | Q.5
(a) | If a topological space (Y T) is disconnected then prove that the | | | | (/ | If a topological space (X,τ) is disconnected then prove that there is a non-empty proper subset of X that is both τ — open and τ —closed. | [5] | | | (b) | If (Y, τ_Y) is a compact subspace of a Hausdroff space (X, τ) then prove that Y is τ -closed. | [5] | | | Q.6 | | | | | (a) | Prove that a continuous image of compact space is compact. | [5] | | | (b) | Show that the space $(\mathbb{R}$, $u)$ is a T $_3$ -space. | [5] | | | | OR | | | | Q.6
(a) | Prove that every compact Hausdroff space is a T_3 -space . | [5] | | | | | | | | (b) | Show that every metric space is a Hausdroff space. | [5] | |