

(12) Define: T₁ - space

SARDAR PATEL UNIVERSITY

B.Sc. (SEM-VI) Examination(Regular & NC)

Friday, 1st April-2016 USO6CMTHO3 (Topology)

Time: 2:30 P.M. TO 5:30 P.M.

Maximum Marks: 70

Note: Figures to the right indicate marks to the questions.

Q.1	and the correct choice from the given ontions	[10]
(1)	is neither u-open nor u-closed.	[10]
(2)	(a) (2,9) (b) [2,9] (c) [2,9) (d) none	
(2)	Intersection of closed set is closed.	
(3)	(a) Finite (b) Arbitrary (c) Infinite (d) none	
(3)	Let (X, τ) be a topological space. A subset F of x is τ -closed if X-F τ .	
(4)	$(a) \not\leftarrow (b) \subset (c) \not\in (d) \in$	
(4)	Two topological spaces are said to be topologically equivalent iff they are	
(5)	(a) continuous (b) not continuous (c) homeomorphic (d) not homeomorphic is not a cluster point of (-2, 9) in (\mathbb{R}, u) .	
(0)	(a) -3 (b) -2 (c) 0 (d) 9	
(6)	In (X, τ) , if $A \subset X$ then Int(A) is the subset of A.	
	(a) Smallest 7 -closed (b) largest 7 -closed (c) amallast 7	
(7)	(a) Smallest τ -closed (b) largest τ -closed (c) smallest τ -open (d) largest τ -open let t_1 and t_2 be any two open intervals then (t_1, t_2, t_3) and (t_3, t_4)	
	Let l_1 and l_2 be any two open intervals then (l_1, u_{l_1}) and (l_2, u_{l_2}) are	
(8)	(a) Isomorphic (b) Homeomorphic (c)not Homeomorphic (d) none (2, 5) is in its relativized u-topology.	
. ,	(a) connected (b) disconnected (c) compact (d) none.	
(9)	Which of the following is not true for topological spaces?	
	(a) Every T ₃ -space is T ₂ -space (b)Every T ₂ -space is T ₁ -space	
	(c) (\mathbb{R}, u) is a T_2 -space (d) Every T_1 -space is T_2 -space	
(10)	Every is compact in its relativized u-topology.	
	(a) [a, b) (b) (a, b] (c) [a, b] (d) (a, b)	
Q.2	Answer ANY TEN of the following:	[20]
(1)	Show that $(-1, 3) \cup (6, 7)$ is u- open set.	[20]
(2)	Prove that $\{a\}$ is closed set in (\mathbb{R}, u) if $a \in \mathbb{R}$.	
(3)	Find X and τ for which (X, τ) is not a topological space.	
(4)	Define: Dense set.	
(5)	Check whether 1 is an interior point of [0, 1] in (\mathbb{R}, u) or not.	
(6)	Define: continuous mapping in topological space.	
(7)		
(8)	For X={a,b,c}, Determine whether $\tau = \{\emptyset, X, \{c\}, \{a,b\}\}\$ is connected or disconnected.	
(9)	Let (\mathbb{R}, u) be a topological space. Show that u is a Hausdroff topology for R . If (X, τ) is a Hausdroff space and $p \in X$ then prove that $\{p\}$ is τ – closed set.	
(10)	Define: Regular space Then prove that $\{p\}$ is $T - closed$ set.	
(11)	Prove that every T_2 –space is T_1 –space.	

Q.3			
	Define: Door Space. Give an example of a space which is door space and one example of a space which is not Door space. Justify your answer. OR	[10]	
Q.3	Define: Coarser Topology, Finer Topology, Non-comparable topologies . Give an example of each. Justify your answer.	[10]	
Q.4			
(a) (b)	Let (X, τ) be a topological space and $A \subset X$ then prove that $Int(A)$ is τ –open set. If (X, τ) and (Y, ψ) are topological spaces and $f: X \to Y$ is a continuous mapping then prove that inverse image of every ψ – nbhd of $f(x)$ is τ – nbhd of x ; $x \in X$.	[5] [5]	
	OR		
Q.4			
(a)	Let (X,τ) be a topological space and $A \subset X$ then prove that A is τ -open set iff $Int(A) = A$.	[5]	
/L\	· · · · · · · · · · · · · · · · · · ·		
(b)	If (X,τ) and (Y,ψ) are topological spaces. If the inverse image of f of every ψ —closed set is τ —closed set then prove that the mapping f is continuous.	[5]	
Q.5			
(a)	If a topological space (X,τ) has a non-empty proper subset A that is both τ —open and τ —closed then prove that (X,τ) is disconnected.	[5]	
(b)	Prove that a continuous image of a connected space is connected.	[5]	
0.5	OR		
Q.5 (a)	If a topological space (Y T) is disconnected then prove that the		
(/	If a topological space (X,τ) is disconnected then prove that there is a non-empty proper subset of X that is both τ — open and τ —closed.	[5]	
(b)	If (Y, τ_Y) is a compact subspace of a Hausdroff space (X, τ) then prove that Y is τ -closed.	[5]	
Q.6			
(a)	Prove that a continuous image of compact space is compact.	[5]	
(b)	Show that the space $(\mathbb{R}$, $u)$ is a T $_3$ -space.	[5]	
	OR		
Q.6 (a)	Prove that every compact Hausdroff space is a T_3 -space .	[5]	
(b)	Show that every metric space is a Hausdroff space.	[5]	

