Sardar Patel University Second Semester F. Y. B. Sc US02CPHY01 (Physics)(NC) lassical Mechanics & Relativity

	Classical Mechanics &				
Date: 18/10/2016		Time: 0200 to 04:00 p.m.			
Tuesday		Total Mar	ks: [70]		
Q-1	Multiple Choice Questions.			[10]	
1	For irrotational vector, curl V =				
•	(a) 0 (b) ∞	(c) -1	(d) 1		
2	For scalar ϕ , ∇ . $\nabla \phi = \cdots$.				
	(a) 0 (b) ∞	(c) -1	(d) 1		
3	The maximum line integral per unit	area enclosed	by the path of		
	integration is called				
	(a) gradient (b) divergence	(c) curl	(d) flux		
4	The planet moving around the Sun is due	to conservation	of angular		
	(a) acceleration (b) velocity	(c) momentum	(d) none		
5	If $m_1 = m_2$ in Atwood's machine the accel	eration of machi	ne will be		
	(a) 0 (b) ∞	(c) -1	(d) 1		
. 6	The periodic time of a compound pendul	lum will be	when the axis		
	of rotation passing through the c.g.				
	(a) equal (b) same	(c) minimum	(d) maximum		
7	If the length of simple pendulum is incre	ased by 44% the	n what is change		
	in the time period of the pendulum?				
		(c) 20%			
8	A set of co-ordinate axes with respect to	which measuren	nents are made is		
	called				
	(a) frame of reference		ime of reference		
	(c) non-inertial frame of reference				
9	is invariant under Galilean tran		(1) (1)		
	(a) Velocity (b) Mass	(c) Acceleration	i (d) Work		
10	believed in absolute time.	() 51	(I) M		
•	(a) Maxwell (b) Galileo	(c) Einstein	(d) Newton		
				[20]	
Q-2	Short Questions (Attempt Any Ten).				
1	Give the characteristics of scalar triple product.				
2	Define divergence & curl of vector.				
3	State Gauss's theorem & Stoke's theorem.				
4 5	State & prove the conservation of angular momentum of a particle. Prove that linear momentum of the particle is conserved if no external				
5	force acting on it.	atticle is conserv	rea if the external		
6		le under constan	t force.		
7	Write the equation of motion of a particle under constant force. What is compound Pendulum?				
8		eriod of a compo	und pendulum		
9	State the condition for minimum time period of a compound pendulum. Define centre of suspension & centre of oscillation.				
10	What is ether? Give main features of eth				
11	State the fundamental postulates of special theory of relativity.				
12					
12	2) Inverse Lorentz transformation				

Q-3	(A)	A.(B x C)=B(A.C)-C(A.B) and find the volume of the parallelepiped for $A = i + 2j - k$; $B = j + k$; $C = I - i$.			
	(B)	Give the physical significance of curl of a vector point function & Derive its expression in rectangular co-ordinate system.	[04]		
Q-3	(A) (B)	In a to a control cities	[06] [04]		
Q-4	(A) (B)	Prove that the sum of kinetic energy & potential energy of a particle at general point in a conservative force field is constant.			
		Derive the equation of motion of a particle under constant force. OR	[04]		
Q-4	(A)	Discuss the motion of a charged particle in a crossed field 8 days	[06]		
	(B)	expression of drift velocity. Discuss the motion of a charged particle in a constant magnetic field & derive the expression of cyclotron frequency.	[04]		
Q-5	(A)	What is simple pendulum? Derive an expression for the periodic time of a	[05]		
	(B)	simple pendulum. Write drawbacks of simple pendulum. Prove that there are four points collinear with the centre of gravity of a compound pendulum about which its times of oscillations are equal, hence obtain the length of an equivalent simple pendulum. OR	[05]		
Q-5	(A)	Draw a diagram of a Bar Pendulum & explain how to determine 'g' using Bar Pendulum.	[06]		
	(B)	Draw a diagram of a Kater's Pendulum & prove that the distance between the knife edges equal to the length of simple equivalent pendulum.	[04]		
Q-6		results obtained from this experiment were interpreted?	[10]		
Q-6	[Discuss the case of Lorentz-Fitzgerald length contraction & obtain L_0 . Discuss the phenomena of time dilation and mass energy equivalence. Obtain energy momentum relation.	[10]		