SARDAR PATEL UNIVERSITY

F. Y. B.Sc. (II SEM.) (CBCS) EXAMINATION

Tuesday, $10^{\text {th }}$ April 2012
11.00 am - 1.00 pm

US02CMTH02: Mathematics
(Matrix Algebra and Differential Equations)
Total Marks: 70
Q. 1 Choose the correct option for the following questions and write it down [10] in the Answer-sheet.
(1) Product AB of two matrices can be defined only if \qquad .
(a) They have same order.
(b) Number of rows of A and number of columns of B are equal.
(c) Number of columns of A and number of rows of B are equal.
(d) Both are square matrices.
(2) If $\left[\begin{array}{cc}2 x-1 & 3 y \\ 2 & 0\end{array}\right]=\left[\begin{array}{ll}3 & 9 \\ 2 & 0\end{array}\right]$, then $\mathrm{x}=$ \qquad .
(a) 0
(b) -1
(c) 1
(d) 2
(3) Any diagonal matrix is called a scalar matrix if all the diagonal elements are \qquad .
(a) equal
(b) zero
(c) one
(d) different
(4) $\left[\begin{array}{cc}6 & -7 \\ 12 & -14\end{array}\right]$ is \qquad matrix.
(a) orthogonal
(b) singular
(c) non-singular
(d) none of these
(5) If 3 is the characteristic root of A, then
(a) $|I+3 A|=0$
(b) $|I-3 A|=0$
(c) $\overline{|A+3 I|}=0$
(d) $|A-3 I|=0$
(6) A square matrix A is said to be orthogonal matrix if \qquad
(a) $A \cdot A^{\prime}=I$
(b) $A \cdot A^{-1}=I$
(c) $A \cdot A^{\Theta}=I$
(d) $A=A^{\prime}$
(7) $\frac{1}{D^{2}+4} e^{-2 x}=$ \qquad .
(a) $\frac{x^{2}}{2!} e^{-2 x}$
(b) $-\frac{x^{2}}{2!} e^{-2 x}$
(c) $\frac{1}{8} e^{-2 x}$
(d) $-\frac{1}{8} e^{-2 x}$
(8) A complementary function of $\left(D^{2}-4 D+4\right) y=x$ is \qquad .
(a) $\left(c_{1}+c_{2}\right) e^{2 x}$
(b) $\left(c_{1}+c_{2} x\right) e^{2 x}$
(c) $c_{1} \cos 2 x+c_{2} \sin 2 x$
(d) $\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right) e^{2 x}$
(9) $\frac{1}{f(D)} e^{3 x} \cdot x^{2}=$ \qquad .
(a) $e^{2 x} \frac{1}{f(D+2)} x^{2}$
(b) $e^{3 x} \frac{1}{f(D+3)} x^{2}$
(C) $e^{2 x} \frac{1}{f(D-2)} x^{2}$
(d) $e^{3 x} \frac{1}{f(D-3)} x^{2}$
(10) $\frac{1}{f(D)} x \sin x=$ \qquad .
(a) $\left[x-\frac{1}{f^{\prime}(D)} f(D)\right] \frac{1}{f^{\prime}(D)} \sin x$
(b) $\left[x+\frac{1}{f^{\prime}(D)} f(D)\right] \frac{1}{f^{\prime}(D)} \sin x$
(c) $\left[x-\frac{1}{f(D)} f^{\prime}(D)\right] \frac{1}{f(D)} \sin x$
(d) $\left[x+\frac{1}{f(D)} f^{\prime}(D)\right] \frac{1}{f(D)} \sin x$
Q. 2 Answer the following questions in short. (Attempt Any Ten)
[20]
(1) Show that $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ is an orthogonal matrix.
(2) Define Scalar Matrix with two illustrations.
(3) Define Identity Matrix with two illustrations.
(4) Define Singular Matrix with an illustration.
(5) If $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$ then find the eigen values of A .
(6) Define Characteristic Matrix with an illustration.
(7) Solve $\left(D^{3}-4 D^{2}+5 D-2\right) \mathrm{y}=0$.
(8) Prove that $\frac{1}{D-\alpha} x=e^{\alpha x} \int x e^{-\alpha x} d x$.
(9) Define Linear Differential Equation with constant coefficients. Give two illustrations.
(10) Find P. I. for $\left(D^{2}+3 D+2\right) y=\sin 3 x$.
(11) Write down the rules for finding the particular integral of $f(D) y=\cos m x$, where m is constant.
(12) Find C. F. for $\left(D^{2}+2\right) y=\left(x^{2}+1\right) e^{3 x}+e^{x} \cos 2 x$.

Q. 3

(a) State and prove associative law for product of matrices.
(b) Prove that every square matrix can be expressed in one and only one way as $P+i Q$, where P and Q are Hermitian matrices.

OR

Q. 3
(a) In usual notations prove that $A(B+C)=A B+A C$.
(b) If $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, then show that $A^{k}=\left[\begin{array}{cc}1+2 k & -4 k \\ k & 1-2 k\end{array}\right]$,
where k is a positive integer.
Q. 4
(a) State and prove Cayley-Hamilton theorem.
(b) Verify Cayley-Hamilton theorem for the matrix

$$
A=\left[\begin{array}{rrr}
1 & 2 & 3 \\
2 & -1 & 4 \\
3 & 1 & 1
\end{array}\right] \text {. Also compute } \mathrm{A}^{-1}
$$

OR

Q. 4
(a) Prove that every orthogonal matrix A can be expressed as $A=(I+S)(I-S)^{-1}$ by a suitable choice of a real skew-symmetric matrix S, provided that -1 is not a characteristic root of A.
Find the characteristic roots and one of the corresponding [05]
(b) characteristic vector of the matrix $A=\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
Q. 5
(a) Solve: $\left(D^{2}-3 D+5\right) y=e^{-x}$
(b) Solve: $\left(D^{2}+4\right) y=\sec 2 x$
[05]

OR

Q. 5
(a) Obtain the rule for finding the particular integral of $f(D) y=e^{m x}$, where m is constant.
(b) Solve: $\left(D^{3}-1\right) y=\left(e^{x}-1\right)^{2}$
Q. 6
(a) In usual notations prove that $\frac{1}{f(D)} x V=\left[x-\frac{1}{f(D)} f^{\prime}(D)\right] \frac{1}{f(D)} V$, where V is a function of x .
(b) Solve: $\left(D^{2}+3 D+2\right) y=\cos 3 x$
OR
Q. 6
(a) Obtain the rule for finding the particular integral of $f(D) y=\operatorname{sinmx}$, where m is constant.
(b) Solve: $\left(D^{3}-D^{2}-6 D\right) y=x^{3}$

