SARDAR PATEL UNIVERSITY F. Y. B.Sc. (II SEM.) (CBCS) EXAMINATION Tuesday, 10th April 2012 11.00 am - 1.00 pm US02CMTH02: Mathematics (Matrix Algebra and Differential Equations)

Total Marks: 70

[10]

Q.1 Choose the correct option for the following questions and write it down in the Answer-sheet.
(1) Product AB of two matrices can be defined only if _______.
(a) They have same order.
(b) Number of rows of A and number of columns of B are equal.
(c) Number of columns of A and number of rows of B are equal.
(d) Both are square matrices.
(2) If
$$\begin{bmatrix} 2x-13y \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 9 \\ 2 & 0 \end{bmatrix}$$
, then x= ______.
(a) 0 (b) -1 (c) 1 (d) 2
(3) Any diagonal matrix is called a scalar matrix if all the diagonal elements are ______.
(a) equal (b) zero (c) one (d) different
(4) $\begin{bmatrix} 6 & -7 \\ 12 & -14 \end{bmatrix}$ is ______ matrix.
(a) orthogonal (b) singular (c) non-singular (d) none of these
(5) If 3 is the characteristic root of A, then ______.
(a) $|I + 3A| = 0$ (b) $|I - 3A| = 0$ (c) $|A + 3I| = 0$ (d) $|A - 3I| = 0$
(6) A square matrix A is said to be orthogonal matrix if ______.
(a) $A \cdot A' = I$ (b) $A \cdot A^{-1} = I$ (c) $A \cdot A^{\Theta} = I$ (d) $A = A'$
(7) $\frac{1}{D^2 + 4}e^{-2x}$ = ______.
(a) $\frac{x^2}{2!}e^{-2x}$ (b) $-\frac{x^2}{2!}e^{-2x}$ (c) $\frac{1}{8}e^{-2x}$ (d) $-\frac{1}{8}e^{-2x}$
(8) A complementary function of $(D^2 - 4D + 4)$ y = x is ______.
(a) $(c_1 + c_2)e^{2x}$ (b) $(c_1 + c_2)e^{2x}$
(c) $c_1 \cos 2x + c_2 \sin 2x$ (d) $(c_1 \cos 2x + c_2 \sin 2x)e^{2x}$
(g) $\frac{1}{f(D)}e^{3x} \cdot x^2 = _____.
(a) $e^{2x} \frac{1}{f(D-2)}x^2$ (b) $e^{3x} \frac{1}{f(D-3)}x^2$
(10) $\frac{1}{f(D)}x \sin x = ____.$$

(a)
$$\left[x - \frac{1}{f'(D)}f(D)\right] \frac{1}{f'(D)} \sin x$$
 (b) $\left[x + \frac{1}{f'(D)}f(D)\right] \frac{1}{f'(D)} \sin x$
(c) $\left[x - \frac{1}{f(D)}f'(D)\right] \frac{1}{f(D)} \sin x$ (d) $\left[x + \frac{1}{f(D)}f'(D)\right] \frac{1}{f(D)} \sin x$

Q.2 Answer the following questions in short. (Attempt Any Ten)

[20]

[05]

[05]

[05]

- (1) Show that $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ is an orthogonal matrix.
- (2) Define Scalar Matrix with two illustrations.
- (3) Define Identity Matrix with two illustrations.
- (4) Define Singular Matrix with an illustration.

- (5) If $A = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ then find the eigen values of A.
- (6) Define Characteristic Matrix with an illustration.
- (7) Solve $(D^3 4D^2 + 5D 2) y = 0$.

(8) Prove that
$$\frac{1}{D-\alpha}x = e^{\alpha x} \int x e^{-\alpha x} dx$$
.

- (9) Define Linear Differential Equation with constant coefficients. Give two illustrations.
- (10) Find P. I. for $(D^2 + 3D + 2) y = sin3x$.
- (11) Write down the rules for finding the particular integral of f(D)y=cosmx, where m is constant.
- (12) Find C. F. for $(D^2 + 2) y = (x^2 + 1) e^{3x} + e^x \cos 2x$.

Q.3

- (a) State and prove associative law for product of matrices.
- (b) Prove that every square matrix can be expressed in one and only one [05] way as P + iQ, where P and Q are Hermitian matrices.

OR

Q.3
(a) In usual notations prove that A (B + C) = AB + AC. [05]
(b)
$$\begin{bmatrix} 3 & -4 \end{bmatrix}$$
 $\begin{bmatrix} 1 & 2k & -4k \end{bmatrix}$ [05]

(b) If
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
, then show that $A^k = \begin{bmatrix} 1+2k & -4k \\ k & 1-2k \end{bmatrix}$,

where k is a positive integer.

Q.4

- (a) State and prove Cayley-Hamilton theorem.
- (b) Verify Cayley-Hamilton theorem for the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1 \end{bmatrix}.$$
 Also compute A⁻¹.

C

Q.4		
(a)	Prove that every orthogonal matrix A can be expressed as $A = (I + S) (I - S)^{-1}$ by a suitable choice of a real skew-symmetric matrix S, provided that -1 is not a characteristic root of A.	[05]
	Find the characteristic roots and one of the corresponding $\begin{bmatrix} 6 & -2 & 2 \end{bmatrix}$	[05]
(b)	characteristic vector of the matrix $A = \begin{bmatrix} -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$	
Q.5	$Calver (D^2 - 2D + E) = e^{-x}$	1051
(a) (b)	Solve: $(D^2 + 4) y = \sec 2x$	[05] [05]
0 5	OR	
Q.5 (a)	Obtain the rule for finding the particular integral of $f(D)y = e^{mx}$, where m is constant.	[05]
(b)	Solve: $(D^3 - 1) y = (e^x - 1)^2$	[05]
Q.6		
(a)	In usual notations prove that $\frac{1}{f(D)}xV = \left[x - \frac{1}{f(D)}f'(D)\right]\frac{1}{f(D)}V$,	[05]
(b)	where V is a function of x. Solve: $(D^2 + 3D + 2) y = cos3x$	[05]
0.0	OR	
Q.6 (a)	Obtain the rule for finding the particular integral of $f(D)y = sinmx$,	[05]
(b)	Solve: $(D^3 - D^2 - 6D) y = x^3$	[05]
