C24J

Date: 30/04/2011

SARDAR PATEL UNIVERSITY

No. of printed pages: 4

Marks: 70

B.Sc.[Second Semester] Examination-April-2011

Subject: ORGANIC CHEMISTRY (US02CCHE01)

Day	Saturday Time: 03:00 pm to 05:00 pm
0.1	Choose the correct option and rewrite the following sentence. [10]
Q-1	
(1)	In an organic compound the normal tetrahedral angle value on carbon atom is
	(a) 90° (b) 109.5° . (c) 109° (d) 190°
(2)	The general formula of Grignard reagent is
	(a) HX (b) RX (c) RMgX (d) R ₂ CuLi
(3)	According to Baeyer's assumption is a stable cycloalkane.
	(a) cyclopentane (b) cyclopropane (c) Cyclobutane (d) cyclohexane
(4)	is the best suitable catalyst for the dehydrohalogination of sec. butyl bromide.
	(a) Aqueous KOH (b) KOH (c) Alcoholic KOH (d) None.
(5)	E2 reaction is a step reaction.
	(a) single (b) two (c) three (d) zero.
(6)	Organic molecules contains bond.
	(a) dative (b) ionic (c) coordinate (d) covalent.
(7)	The rate of S_N1 reaction depends upon the concentration of
	(a) both substrate & nucleophile (b) nucleophile (c) substrate (d) None.
(8)	is an ortho & para directing group.
, ,	(a) -NO ₂ (b) -COOH (c) -CHO (d) -OH.
(0)	not follow Huckel (4 n + 2) rule.
(9)	
	(a) Benzene (b) cyclohexane (c) Anthracene (d) Naphthalene
(10)	Sulphonation of benzene involves as an electrophile.
	(a) SO_3^- (b) SO_3H (c) SO_3 (d) SO_3^+
Q-2	Short Questions. (Attempt Any Ten) [20]
(1)	Define the term free Radical & Chain reaction.
(2)	What are the limitations of Baeyer's strain theory?
(2)	Cyclopropane is more prone to undergo ring opening reaction than Cyclobutane. Explain.

(4)	1-butyne gives white precipitate with Tollen's reagent while 2-butyne does not. Explain.	
(5)	cis-2-butene is less stable than trans-2-butene.Explain.	
(6)	Write note on ozonolysis.	
(7)	Define the term Substrate & Carbocation.	
(8)	2-Bromo-3- methylanisole does not react with NH ₂ ⁻ / liq.NH ₃ via elimination-addition mechanism.Explain.	
(9)	3° carbocation is more stable than 2° and 1° carbonation Explain.	
(10)	Classify the following into activating & deactivating group.	
	-CH ₃ , -CI, -CN, -OH, -OCH ₃ , -NO ₂ , -NH ₂ -CHO	
(11)	Nitrobenzene upon further nitration gives m-dinitrobenzene. Explain.	
(12)	Toluene is more reactive than benzoic acid toward electrophilic aromatic substitution reaction. Explain.	
Q-3	Answer the Following:	
(A)	Give the reaction mechanism for the photochlorination of ethane.	[4]
(B)	Write the structural formula and IUPAC name for the following:	[3]
	(i) Norbornane. (ii) Norbornene (iii) Nortricyclene	
(C)	Calculate the percentage of isomeric products obtained upon monochlorination of n-butane . The relative reactivity of 1° , 2° and 3° H are $1:3.8:5$ respectively.	[3]
	OR	
Q-3	Answer the Following:	
(A)	Write the structural formula for the following:	[4]
	(i) Bicyclo[6.3.1]dodecane. (ii) Bicyclo[1.1.1]pentane.	
	(iii) Bicyclo[5.2.0]nonane. (iv) Tricyclo[5.2.0.0 ^{3,5}]nonane.	
(B)	Define heat of combustion. Discuss the stability of cyclopropane and cyclobutane with respect to heat of combustion.	[3]
(C)	Complete and rewrite the following equation.	[3]
	(i) Sec.Butylbromide Mg? H ₂ O?	
	(ii) Cyclopropane Cl ₂ / light ?	
	(iii) Cyclobutane H ₂ /Ni ?	
	200°C	

Q-4	Answer the following:	
(A)	Discuss El reaction with respect to mechanism and kinetics.	[3]
(B)	Write a note on : keto-enol tautomerism.	[3]
(C)	Complete and rewrite the following equation.	[4]
K	(i) Isobutene + Isobutane $\frac{\text{conc.H}_2\text{SO}_4}{0-10^{9}\text{C}}$?	
	(ii) 1-Butene Hg(OAc) ₂ /H ₂ Q ? NaBH ₄ ?	
	(iii) Propylene $(BH_3)_2$? H_2O_2/OH ?	
	(iv) 1-Pentene KMnO ₄ ? NaIO ₄ ?	
	OR	
Q-4	Answer the following:	
(A)	Give the reaction mechanism for the addition of bromine to an alkene.	[3]
(B)	Distinguish between oxymercuration-demercuration and hydrtoboration-oxidation.	[3]
(C)	Do as directed:	[4]
	(i) Acetylene reacts with Li metal followed by methyl bromide.	
	(ii) 1-Hexene reacts with Hg(OAc) ₂ /H ₂ O followed by treatment with NaBH ₄ .	
	(iii) 2-Pentyne on ozonolysis followed by Zn / H ₂ O.	
	(iv) Propylene reacts with Br ₂ followed by Alc.KOH and NaNH ₂ .	
Q-5	Answer the following:	
(A)	Write all the possible isomeric structural formula and IUPAC name for the compound having molecular formula C_4H_9Br . Classify them as 1^0 , 2^0 and 3^0 alkyl halides.	[3]
(B)	Write an account for 1,2-alkyl and 1,2-hydride shift.	[3]
(C)	Suggest appropriate reaction mechanism for the following conversion.	[4]
	Chlorobenzene $\frac{NH_2}{liq.NH_3}$? $\frac{NH_2}{liq.NH_3}$?	. P. 2
	OR	
Q.5	Answer the following:	
(A)	Discuss that Chlorobenzene and vinyl chloride have low reactivity towards nucleophilic substitution reaction compare to ethyl chloride.	[3]
(B)	Account both o-bromoanisole and m-bromoanisole yields the same product m-anisidine in presence of NH_2 / $Iiq.NH_3$.	[3]
(C)	Distinguish between:	[4]
	(a) Homolytic cleavage and Heterolytic cleavage. (b) Nucleophile and Electrophile.	

Q-6	Answer the following:	
(A)	Give the structural formula and IUPAC name for the following:	[3]
	(i) Cumene (ii) Picric Acid (iii) Mesitylene	
(B)	Write the reaction mechanism for the nitration of benzene.	[3]
(C)	Complete and rewrite the following equation.	[4]
	(i) Benzene $\frac{HNO_3}{H_2SO_4}$? $\frac{Br_2}{FeBr_3}$?	
	(ii) Styrene $\frac{H_2/Ni, 20^{\circ}C}{2-3 \text{ atm}, 75 \text{ min.}}$? $\frac{H_2/Ni, 125^{\circ}C}{110 \text{ atm}, 100 \text{ min.}}$?	
	(iii) Toluene alkaline KMnO ₄ ? HNO ₃ ? H ₂ SO ₄	
	(iv) Ethylbenzene Cl ₂ ? alcoholic KOH ? Heat Pearling in the supplementation of the suppl	
	OR	
Q-6	Answer the following:	
(A)	Write the structural formula and name for the following molecular formula of aromatic compound:	[3]
	(i) C ₈ H ₁₀ (ii) C ₈ H ₆ O ₄ (iii) C ₇ H ₆ O	
(B)	Write reaction mechanism for the Fridel Craft's alkylation of benzene.	[3]
(C)	Outline the synthesis for the following:	[4]
1-7	(i) Benzoic acid from benzene via styrene.	1.1
	(ii) Phenyl acetylene from benzene via ethyl benzene.	
