SEAT No._

No. of Printed Pages: SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar - 388120

B.Sc. (2ND Sem) Examination - March/April 2018 [CBCS]

Wednesday, 4th April, 2018 02:00 PM to 04:00 PM

US02CINV01 (Instrumentation - Vocational)

Basic Electronic Instruments

Maximum Marks: 70

Que 1	Each question below gives a magnetic appropriate one.	ultiple choice of answers. Choose the most [1	0]						
1	A Train of Sine Waves which Contains 50 Positive Peaks and 50 Negative Peaks per Second has Frequency of Hz.								
	a) 50×10^6	b) 50×10^3							
	c) 50	d) 50 x 10 ⁻⁶							
2	If the Phase Difference of Sinusoidal Wave is Degree, the Wave is Considered as Out of Phase Signal.								
	a) 60	b) 90							
	c) 180	d) 270.							
3	According to Kirchoff's Current Law (KCL), the Algebraic Sum of Currents Meeting at a Junction is								
	a) Zero	b) Very High and Positive							
	c) Very Low and Negative	d) Always One							
4	An Ideal Constant Current Source has Ohm Resistance.								
	a) Zero	b) One							
	c) Medium	d) Infinite							
5	In Ideal Capacitive Circuit, Phase Difference Between Voltage and Current is Degree.								
	a) 0	b) 90							
	c) 180	d) 270							
6	Sharpness of Resonance is Ratio of	of the Circuit to Its Resonance Frequency.							
	a) Current	b) Voltage							
	c) Quality Factor	d) Bandwidth							
7	Power Factor of Series Resonant Cir	rcuit is							
	a) Zero	b) +1							
	c) -1	d) Infinite							
8	Theyenin's Equivalent of a Circuit Consists of a Constant Source and Equivalent Resistance in Series With It.								
	a) Current	b) Power							
		d) Current and Voltage							

9	Ind	ucti	ve Reactance	is	_• · · ·									
		a)	Proportional	to Fre	quency		b)	Inverseley Frequency	Prop	ortional	to			
	 c) Proportional to Square of Frequency d) Inversely Proportional to Square Root of Frequency 													
10	Capacitive Reactance is													
		_	Inverseley Square Root o		ortional uency	to	b)	Proportional Frequency	l to	Square	of			
		-	Inverseley Frequency	Propo	ortional	to	d)	Proportional	to Fred	luency	·			
Que 2	Short Questions (Attempt any TEN) [20													
1	Explain What Network Circuit is.													
2	Dra	w 0	nly Waveforn	ı For I	nductor R	Respons	e to S	Sinusoidal Sig	nals.					
3	Wha	at D	o You Mean B	y Peal	to Peak '	Value In	ı Terr	ns of Sinusoic	lal Sign	al?				
4	Wha	at is	"Phase (Angle	e) Diff	erence"?						•			
5	Enlist Factors Which Determine the Energy Stored by Capacitor.													
6	Brie	efly l	Explain KCL.			,								
7	Wha	at D	o You Mean B	y Phas	e Lagging	g and Ph	ıase I	eading?						
8	Wri	te B	riefly on Nort	on's T	heorem.									
9	Explain "Tuning RLC Circuit".													
10	What is Resonance Circuit?													
11	Explain What Quality Factor is.													
12	Enlist Applications of Resonance Circuit.													
Que 3	[A] Derive an Expression for the Average and Effective Values of the Sinusoidal Signals. Write on Form Factor.										idal [05]			
	[B] Convert Following Polar Coordinates to Cartesian Coordinates, Vice Versa.									[05]				
			1) $Z_T = 6 + j6$											
			2) Z _T = 9-j2 3) Z _T = 100 <	< 45°										
			4) $Z_T = 3 - j4$					•						
			5) $Z_T = 5 < 3$	7°										
						OR								
	[C]	Do	As Directed:								[05]			
			1) j5 +(3-j2) 2) (7-j) - (6											
			3) (9+j2) + (,							
	,		4) (8-j8) + (5) (5-j2) + (
•	[D]	Ex	plain Followir	ng Ter	ms With I	Respect	to A(Signals With	Necess	ary Figure	s: [05]			
			1) Phase	177										
			2) Frequence3) Periodic '	-						•				
							١				,			
						2	,							

Find Periodic Time of the Signal Produced By the Inverter With 10 KHz Frequency.

State Millman's Theorem. Determine The Value of "Vxy" In Circuit Given Que 4 Below Using Millman's Theorem.

Give an Account of Thevenin's Theorem.

[05]

[10]

OR

- Discuss Maximum Power Transfer Theorem With Necessary Circuit Diagram.
- [05] Discuss Parallel RL Circuit For AC Signals. Derive an Expression For the Total Que 5 [A] Impedance and Phase Angle of the Circuit.
 - [05]

OR

Explain The Capacitor Response to Sinusoidal Signals.

- Discuss Series RL Circuit For AC Signals. Derive an Expression For the Total [05] Impedance and Phase Angle of the Circuit.
- The Current of 1.2 Amp Flows in a Coil With Inductance of 0.4 Henry, Determine [05] [D]the Energy Stored in Inductor.
- Draw and Explain the Circuit of the Parallel Resonance. Derive an Expression [05] Que 6 [A] For the Resonance Frequency.
 - A Circuit Consist of Capacitor of 100pF Connected in Parallel With Coil of [05] Resistance 5Ω and Inductance 100 μ H. Calculate
 - 1) Resonance frequency
 - 2) O-factor

[B]

3) Bandwidth

OR

[10] Give an Account of Series Resonance Circuit. With Necessary Diagrams, Explain Inductor Response to AC Sinusoidal Signals.

. V. .