[10]

SARDAR PATEL UNIVERSITY

B.Sc. (SEM- ||) Examination(Regular & NC)

Tuesday, 29th March-2016

USO2CMTHO2: (MATRIX ALGEBRA AND DIFFERENTIAL EQUATIONS)

Time: 10:30 A.M. TO 12:30 P.M.

Note	Figures to the right indicate marks to the questions.	Maximum Marks: 70	
Q.1	Answer the following by selecting the correct chairs of	Prove that every square matrix can	
(1)	A matrix $A=[a_{ij}]$ is said to be upper triangular matrix if , a_{ij}	the given options.	[
	(a) $i > j$ (b) $i < j$ (c) $i = 1$	=U for all	

(a) i > j(b)i < j (c)i = 1(d) i=1(2)

Principal diagonal entries of skew-Symmetric matrix are all (a) zero (b) comlex (c) real (d) none of these

Total number of elements in a matrix of 3×4 is _ (3)(a) 4 (b) 7

(c) 12 (4) A square matrix A is said to be unitary matrix if _ (a) $A.A^{-1} = 1$ (b) A = A' (c) A.A' = I (d) $A^{\theta}.A = I$

If |A + 4I| = 0 then one of the characteristic root of A is_____. (5)(a) -4(b) 1 (c) 0 (d) 4

Characteristic roots of a Hermitian matrix are_ (6)(a) zero (b) comlex (c) real (d) none of these

The complementary function of $(D^2 - 4D + 4)$ $y = e^x + sin14x + x^5$ is_____ (7)(a) $c_1 e^{2x} + c_2 e^{-2x}$ (b) $c_1 e^{2x} - c_2 e^{-2x}$ (c) $(c_1 + c_2 x) e^{-2x}$ (d) $(c_1 + c_2 x) e^{2x}$

(8)The Solution of $\frac{1}{D^2}e^x = \dots$

(a) e^x (b) $2 e^x$ (c) $\frac{1}{e^{2x}}$ (d) $\frac{1}{2!} e^x$ $\frac{1}{f(D)}e^x \sin x =$ (9)

(a) $e^x \frac{1}{f(D+1)} sinx$ (b) $-e^x \frac{1}{f(D-1)} sinx$ (c) $e^x \frac{1}{f(D-1)} sinx$ (d) $-e^x \frac{1}{f(D+1)} sinx$

The Solution of $\frac{1}{D^2+9}\cos 3x =$ (a) $\frac{x}{6}\cos 3x$ (b) $\frac{x}{6}\sin 3x$ (c) $-\frac{x}{6}\cos 3x$ (d) $-\frac{x}{6}\sin 3x$

Q.2 Attempt any Ten:

[20]

Define: Symmetric matrix with illustration. (1)

If A & B are two matrices of order $m \times n \& n \times p$ then P.T $(AB)^{\theta} = B^{\theta}A^{\theta}$. (2) (3)

For $A = \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix}$ show that $AA^T = I$ If $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & -4 & 9 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 4 & 3 \\ 3 & 9 & 8 \end{bmatrix}$ then find 2A+4B. (4)

Define: (1) Characteristic matrix (2) Characteristic polynomial (5)

(6)Find the characteristic equation of $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$

(7) Let $y_{1 \& y_{2}}$ be two solution of linear differential equation $\frac{d^{n}y}{dx^{n}} + a_{1} \frac{d^{n-1}y}{dx^{n-1}} + ---+ a_{n}y = 0$ & c_1, c_2 be two arbitrary constant .Then $c_1 y_1 + c_2 y_2$ is also a solution .

Solve $(D^3 - 4D^2 + 5D - 2)$ y = 0. (8)

Prove that $\frac{1}{D-\alpha}X = e^{\alpha x} \int X e^{-\alpha x} dx$ Find P.I. for $(D^2 + 9)y = \sin 4x$.

(10)

Find the particular integral of $(D^3 + 4D)y = cos2x$ (11)

Find the particular integral of $(D^3+1)y=x^3$ (12)

- Q.3
- Show that every square matrix can be expressed in one &only one way as the sum of a (a) symmetric & skew- symmetric matrix .
- [5]

State and prove associative law for product of matrices. (b)

[5]

- Q.3
- Prove that every square matrix can be expressed in one and only one way as P+iQ, where P & Q [5] (a) are Hermitian matrix.
- If $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$ then show that $A^k = \begin{bmatrix} 1+2k & -4k \\ k & 1-2k \end{bmatrix}$ where k is positive integer. [5] (b)
- Q.4
- State and prove Cayley- Hamilton theorem. (a)

- [5] [5]
- Find the characteristic equation of the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 3 & -3 & 2 \\ 1 & 1 & -1 \end{bmatrix}$ and verify that it is satisfied (b) by A.
 - OR

- Q.4
- If S is a real Skew-Symmetric matrix then prove that I-S is non singular and the matrix [5] (a) $A = (I + S)(I - S)^{-1}$ is orthogonal.
- Find the characteristic roots and any one of the characteristic vector of matrix (b) [5]
- Q.5 Obtain rule for finding the particular integral of $f(D)y=e^{mx}$ where m is constant. [5] (a)
- [5] Solve $(D^2 + 4)y = sec2x$. (b) OR
- Q.5 Solve $(D^2 - 5D + 6)$ $y = 4e^x$ subject to the condition that y(0)=y'(0)=1. Hence find y(16). [5] (a)
- [5] Solve $(D^3 - 1) y = (e^x - 1)^2$. (b)
- [10] Solve: $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} + 2y = 15(x - x^{-1})$
- OR [10] Solve $(D^2 - 2D + 1) y = e^{3x} x^2$