[8] [AZ4]

No. Of Printed Pages: 3

SARDARPATEL UNIVERSITY

F.Y.BSc. (IInd SEM.) Instrumentation (vocational) SUBJECT-AC FUNDADAMENTALS COURSE CODE-USO2CINV01 2nd APRIL-2016

	: -10:30am to 12:30pm	Mai	rks:-70
Q-1	Choose the correct answer from given.		[10]
1.	Power factor of a resonance series circuit is		
	(a) one	(c) infinite	
	(b) zero	(d) none of above	
2.	An LC circuit is said to be resonance, when XL		
	(a) =XC	(c) < XC	
	(b) >XC	(d) none of above	
3.	The average value of sinusoidal signal is		
	(a) 0.707 Vm	(c) 1.1 Vm	
	(b) 0.636 Vm	(d) none of above	
4.	The superposition theorem is e	ssentially based on the concept of	
_	(a) linearity	(c) both (a) & (b)	
	(b) non-linearity	(d) none of above	
5.	Power factor is given by the ratio of circuit resistance and		
	(a) impedance	(c) current	
	(b) voltage	(d) none of above	
6.	For maximum power transfer th	ne resistance of load circuit should be	
	(a) equal to source resistance	(c) more than source resistance	
	(b) less than source resistance	(d) none of above	
7.	A train of sine wave which conta	ains 60 positive peak and 60 negative	
	peaks per second has a frequency of Hz.		
	(a) 50	(c) 120	
_	(b) 60	(d) none of above	
8.	An ideal constant -current source has resistance.		
	(a) zero	(c) infinite	
	(b) constant	(d) none of above	
9.	The periodic time of the ac signa		
	(a) Amplitude of signal	(c) Frequency of signal	
4.0	(b) Phase angle of signal	(d) none of above	
10.	the Q factor of a circuit na	arrower its bandwidth, in resonance	
	circuit.		
	(a) Lower	(c) Medium	
	(b) Higher	(d) none of above	
Q-2	Short answer type Question (attempt any TEND	FOOT
1.	Short answer type Question.(attempt any TEN) Define peak value of an AC sinusoidal signal.		[20]
2.	Define form factor.		
3.	A sinusoidal signal has ac voltage of peak value 100 volt, determine rms		
<i>J</i> .	value.		
4.	State the Milman's theorem.		
5.	State the Kirchhoff's current and	l voltage law	

- 6. What is network?
- Define admittance.
- 8. Briefly explain tuning RLC circuit.
- Define resonance circuit.
- The high voltage of circuit of color television produces 30000 volt across the 500 pF capacitor. Calculate the energy stored in capacitor.
- **11.** List application of resonance circuit.
- 12. Define Quality factor for resonance circuit.
- Q-3(A) Do as directed
 - (a) (5-j2)+(3+j3) (b) (8-j1)+(8+j3)
- (d) (6-j2)+(4+j4)
- (e) (12+j4)+(5-j3)
- (c) (3-j3)-(2+j2)
- (f)(3+13j)+(5-j5)
- Q-3(B) Convert following polar co-ordinates to Cartesian co-ordinates and vice versa.
 - (a) $Z=141 \& \theta=45^{\circ}$
- (c) X = 10 & Y = 10
- [4]

[5]

[6]

- (b) $Z=100 \& \theta = 25^{\circ}$
- (d) X=25 & Y=25

OR

- Q-3(A) Derive an expression for the average and effective values of the ac sinusoidal signals and derive an expression for the form factor.
- Q-3(B) Define term phase, phase difference, frequency and periodic time of the signal produced by the resonant converter with 30.5 Hz frequency.
- Q-4(A) State and explain Maximum power transfer theorem. [5]
- Q-4(B) State and explain Thevenin theorem. [5]

OR

- Q-4(A) State and explain Norton theorem with necessary figure.
- Q-4(B) Reduce the given circuit in to Norton equivalent circuit. [5]

Explain the resonance of series RL circuit for sinusoidal signals. Derive Q-5(A) [6] expressions for the total impedance and phase angle of the circuit. Explain energy stored and sinusoidal response of an inductor. Q-5(B) [4] Explain the resonance of parallel RL circuit for sinusoidal signals. Derive Q-5(A)[6] expressions for the total impedance and phase angle of the circuit. Explain energy stored and sinusoidal response of capacitor. Q-5(B) [4] Draw the circuit of parallel resonance and explain it with necessary Q-6(A) [6] diagrams. And also derive an expression for resonance frequency. A parallel circuit consisting of a 200 pF capacitor and coil inductance Q-6(B)[4] 200 μH and a resistance 5 $\widetilde{\Omega}$ is connected across a 0.2 V, 800 kHz signal source. Determine for the circuit Q-value and bandwidth . OR Draw the circuit of series resonance and explain it with necessary Q-6(A) [6] diagrams. And also derive an expression for resonance frequency. Q-6(B) Explain series resonance curve. [4]

X= X=X