B. Sc. (Sem. IV) Examination
 Monday, $15^{\text {th }}$ April 2013
 $11.00 \mathrm{am}-1.00 \mathrm{pm}$
 US04EMTH05 - Mathematics
 (Calculus and Algebra - II)

Total Marks: 70
Note: Figures to the right indicate marks to the questions.
Q. 1 Choose the most appropriate option for the following questions and write it down in the answer book.
(1) $f(a, b)$ is local minimum of $f(x, y)$ if \qquad condition satisfies.
(a) $A C-B^{2} \leq 0, A>0$
(b) $A C-B^{2}<0, A<0$
(c) $A C-B^{2}>0, A>0$
(d) $A C-B^{2}=0$
(2) If $f(x, y)$ is sufficiently many times differentiable in some neighbourhood of (a, b) then $f_{x x}(a, b)=$ \qquad -.
(a) A
(b) B
(c) C
(d) None
(3) $\operatorname{For} \mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}+\mathrm{y}^{2}, f_{x x}=$ \qquad .
(a) 2
(b) $2 x$
(c) $4 x$
(d) 2 y
(4) $\nabla f=$ \qquad .
(a) $\sum \bar{i} \frac{\partial f}{\partial x}$
(b) $\sum \frac{\partial f}{\partial x}$
(c) $\sum \bar{i} x$
(d) None
(5) $\operatorname{grad}(8 f)=$ \qquad .
(a) grad f
(b) 8 grad f
(c) grad (8-f)
(d) 0
(6) If $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=3 \mathrm{x}+6 \mathrm{y}$, then $\bar{\nabla} f=$ \qquad .
(a) $3 \bar{i}+3 \bar{j}$
(b) $3 \bar{i}+6 \bar{j}$
(c) $6 \bar{i}+3 \bar{j}$
(d) $x \bar{i}+y \bar{j}$
(7) $\nabla \cdot(\nabla f)=$ \qquad .
(a) 0
(b) $2 \nabla f$
(c) $\nabla^{2} f$
(d) $(\nabla f)^{2}$
(8) For vector $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}, \nabla \cdot \bar{r}=$ \qquad .
(a) 3
(b) 0
(c) $\bar{i}+\bar{j}+\bar{k}$
(d) None
(9) If $\mathrm{a}, \mathrm{b} \in \mathrm{B}, \mathrm{B}$ is boolean algebra, then $a+a \cdot b=$ \qquad .
(a) b
(b) 0
(c) 1
(d) a
(10) If $a \in B, B$ is boolean algebra, then $a \cdot a^{\prime}=$ \qquad .
(a) 1
(b) a
(c) 0
(d) a'
Q. 2 Answer the following questions in short. (Attempt Any Ten)
(1) Define: local maxima and local minima
(2) $\operatorname{For} f(x, y)=x^{2}+x y$, show that $f(0,0)$ is not an extreme value of f.
(3) Find A, B, C for the function $f(x, y)=x^{3}+3 x+x y^{2}$
(4) Find unit normal vector to the surface $x+y+z=1$ at $(4,2,-5)$
(5) Show that $\nabla f(r)=f^{\prime}(r) \nabla r$, where $\bar{r}=x \bar{i}+y \bar{j}$
(6) Find $\bar{\nabla}(\log r)$, where $\bar{r}=x \bar{i}+y \bar{j}$
(7) Define: Curl of a vector field
(8) In usual notations prove that $\bar{\nabla} \cdot(f \bar{v})=f(\nabla \cdot \bar{v})+\bar{v} \cdot \nabla f$
(9) In usual notations prove that, $\nabla \times(\nabla f)=0$
(10) For $\mathrm{a}, \mathrm{b} \in \mathrm{B}$, the boolean algebra, prove $a \cdot(a+b)=a$
(11) Define: dual in boolean algebra and hence find dual of $x+y \cdot z=(x+y) \cdot(x+z)$
(12) Draw network represented by the function $\left(x+y\right.$ ') $\left(x^{\prime}+y\right)$
Q. 3
(a) A rectangular box open at the top is have a volume of $32 \mathrm{~m}^{3}$. Find the dimension of box so that the total surface area is minimum.
(b) Show that $y^{2}+x^{2} y+x^{4}$ has minimum at $(0,0)$

OR

Q. 3
(a) Show that the function $f(x, y)=2 x^{4}-3 x^{2} y+y^{2}$ has neither maximum nor minimum at $(0,0)$.
(b) Show that $x^{3}-3 x y^{2}+2 y^{4}$ has neither maximum nor minimum at $(0,0)$
Q. 4
(a) Find directional derivative of $f(x, y, z)=2 x^{2}+3 y^{2}+z^{2}$ at point $(2,1,3)$ in the direction of $\bar{a}=\bar{i}-2 \bar{k}$
(b) Find gradient of the function $f(x, y)=\frac{x}{x^{2}+y^{2}}$ at $(2,3)$

OR

Q. 4
(a) Find ∇f for $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{2}$ at point $(1,2,3)$
(b) Find unit normal vector to the surface $z^{2}=4\left(x^{2}+y^{2}\right)$ at $(1,0,2)$
Q. 5
(a) Show that $\bar{\nabla} \cdot\left(r^{n} \bar{r}\right)=(n+3) r^{n}$, where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$ and $r=|\bar{r}|$
(b) Verify $\nabla \cdot(f \nabla g)=f \nabla^{2} g+\nabla f \cdot \nabla g$ for $\mathrm{f}=\mathrm{x}+\mathrm{y}+\mathrm{z}, \mathrm{g}=\mathrm{xyz}$

OR
Q. 5
(a) Prove that $\bar{\nabla} \cdot(\bar{\nabla} \times \bar{v})=0$
(b) If $\mathrm{f}(\mathrm{x}, \mathrm{y})=\log \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$, then prove that $\nabla \cdot(\nabla f)=\nabla^{2} f=0$
Q. 6 State and prove De Morgan's laws for boolean algebra B.

For $a, b, c \in B$
If $a b=a c$ and $a+b=a+c$, then prove that $b=c$.
OR
Q. 6 Find boolean function for the following circuit. Simplify it and draw simplified circuit.

