SARDAR PATEL UNIVERSITY B. Sc. (Sem. IV) Examination Monday, 15th April 2013 11.00 am – 1.00 pm US04EMTH05 – Mathematics (Calculus and Algebra - II)

Total Marks: 70

Note: Figures to the right indicate marks to the questions.

Q.1	Choose the most appropriate option f	or the following questions and	[10]
	write it down in the answer book.		
(1)	f(a, b) is local minimum of $f(x, y)$ if	condition satisfies	

(1)	f(a, b) is local minimum of f((x, y) if	_ condition sat	isfie	s.
	(a) $AC - B^2 \le 0, A > 0$	(b) $AC - B^2 < 0$, A < 0		
	(c) $AC - B^2 > 0, A > 0$	$(d) AC - B^2 = 0$			
(2)	If f(x, y) is sufficiently	•		in	some
	neighbourhood of (a, b) then $f_{xx}(a,b) =$				
	(a) A	(b) B			
$\langle 0 \rangle$	(c) C	(d) None			
(3)	For $f(x, y) = x^2 + y^2$, $f_{xx} =$	·			
	(a) 2	(b) 2x			
(4)	(c) 4x	(d) 2y			
(+)	$\nabla f = \underline{\qquad}$	$- \partial f$			
	(a) $\sum \bar{i} \frac{\partial f}{\partial x}$	(b) $\sum \frac{\partial f}{\partial x}$			
	(c) $\sum \overline{i} x$	(d) None			
(5)	grad (8f) =				
	(a) grad f	(b) 8 grad f			
$\langle \mathbf{c} \rangle$	(c) grad (8-f)	(d) 0			
(6)) If $f(x, y, z) = 3x+6y$, then $\nabla f = $				
	(a) $3\bar{i}+3\bar{j}$	(b) $3i + 6j$			
	(c) $6i + 3j$	(d) $x\overline{i} + y\overline{j}$			
(7)	$\nabla \cdot (\nabla f) = \underline{\qquad}.$				
	(a) 0	(b) 2 <i>∇</i> f			
	(c) $ abla^2 f$	(d) $(\nabla f)^2$			
(8)	For vector $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, $\nabla \cdot \vec{r} =$				
	(a) 3	(b) 0			
	(c) $\overline{i} + \overline{j} + \overline{k}$	(d) None			
(9)	If a, b \in B, B is boolean algebra, then $a + a \cdot b =$				
	(a) b	(b) 0			
	(c) 1	(d) a			
(10)	If $a \in B$, B is boolean algebra, then $a \cdot a' =$				
	(a) 1	(b) a			
	(c) 0	(d) a'			

Q.2 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)	Answer the following questions in short. (Attempt Any Ten) Define: local maxima and local minima For f(x, y) = x ² + xy, show that f(0, 0) is not an extreme value of f. Find A, B, C for the function f(x, y) = x ³ + 3x+ xy ² Find unit normal vector to the surface x + y + z = 1 at (4, 2, -5) Show that $\nabla f(r) = f'(r)\nabla r$, where $\overline{r} = x\overline{i} + y\overline{j}$ Find $\overline{\nabla}(\log r)$, where $\overline{r} = x\overline{i} + y\overline{j}$ Define: Curl of a vector field In usual notations prove that $\overline{\nabla} \cdot (f\overline{v}) = f(\nabla \cdot \overline{v}) + \overline{v} \cdot \nabla f$ In usual notations prove that, $\nabla \times (\nabla f) = 0$ For a, b \in B, the boolean algebra, prove $a \cdot (a+b) = a$ Define: dual in boolean algebra and hence find dual of $x + y \cdot z = (x + y) \cdot (x + z)$ Draw network represented by the function $(x + y')(x' + y)$	[20]			
Q.3 (a)	A rectangular box open at the top is have a volume of 32m ³ . Find	[05]			
(b)	the dimension of box so that the total surface area is minimum. Show that $y^2 + x^2y + x^4$ has minimum at (0, 0) OR				
Q.3 (a)	Show that the function $f(x, y) = 2x^4 - 3x^2y + y^2$ has neither maximum nor minimum at $(0, 0)$.	[05]			
(b)	Show that $x^3 - 3xy^2 + 2y^4$ has neither maximum nor minimum at (0, 0)	[05]			
Q.4 (a)	Find directional derivative of $f(x, y, z) = 2x^2 + 3y^2 + z^2$ at point (2, 1, 3) in the direction of $\overline{a} = \overline{i} - 2\overline{k}$	[05]			
(b)	Find gradient of the function $f(x, y) = \frac{x}{x^2 + y^2}$ at (2, 3)	[05]			
Q.4	OR				
(a) (b)	Find ∇f for f(x, y, z) = $(x^2 + y^2 + z^2)^2$ at point (1, 2, 3) Find unit normal vector to the surface $z^2 = 4(x^2 + y^2)$ at (1, 0, 2)	[05] [05]			
Q.5 (a) (b)	Show that $\overline{\nabla} \cdot (r^n \overline{r}) = (n+3)r^n$, where $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ and $r = \overline{r} $ Verify $\nabla \cdot (f \nabla g) = f \nabla^2 g + \nabla f \cdot \nabla g$ for $f = x + y + z$, $g = xyz$ OR	[05] [05]			
Q.5 (a)	Prove that $\overline{\nabla} \cdot (\overline{\nabla} \times \overline{v}) = 0$	[05]			
(a) (b)	If f (x, y) = log (x ² +y ²), then prove that $\nabla \cdot (\nabla f) = \nabla^2 f = 0$	[05]			

Q.6	State and prove De Morgan's laws for boolean algebra B.	[10]
	For a, b, $c \in B$	
	If $ab = ac$ and $a + b = a + c$, then prove that $b = c$.	
	OR	

Q.6 Find boolean function for the following circuit. Simplify it and draw [10] simplified circuit.

* * *