No of printed pages: 3

SARDAR PATEL UNIVERSITY

B.Sc.(SEMESTER - IV) EXAMINATION - 2019

Friday , $12^{th'}$ April , 2019 MATHEMATICS: US04EMTH01

(Boolean Algebra and Laplace Transforms)

Time: 10:00 a.m. to 12:00 noon

Maximum Marks: 70

Que.1 Fill in the blanks.

 $(1) (a')' = \dots$

10

- - (a) a' (b) $(a')^2$ (c) a (d) a^2
- (2) $a + (a.b) = \dots$
 - (a) a (b) b (c) a.b (d) a+b
- (3) $a.(a+b) = \dots$
 - (a) b (b) a (c) a+b (d) a.b
- (4) Mid points of successive interval used for approximation of root an equation in.....

(a) False position method (b) Bisection method (c) Iteration method (d) Aitken's Δ^2 process

- (5) Aitken's Δ^2 process is used for finding approximation
 - (a) Derivative of a function (b) Integral of a function (c) Root of equation (d) None
- (6) Initial approximation of $x^3 x 2 = 0$ can be chosen from
 - (a) [0,1] (b) [-1,0] (c) [1,2] (d) [-2,-1]
- (7) L[cosat] =

(a)
$$\frac{s}{s^2 + a^2}$$
 (b) $\frac{a}{s^2 + a^2}$ (c) $\frac{a}{s^2 - a^2}$ (d) $\frac{s}{s^2 - a^2}$

(8) $L[sinhat] = \dots$

(a)
$$\frac{a}{s^2 - a^2}$$
 (b) $\frac{a}{s^2 + a^2}$ (c) $\frac{s}{s^2 + a^2}$ (d) $\frac{s}{s^2 - a^2}$

- (9) $L^{-1}\left[\frac{1}{s^2+a^2}\right] = \dots$
 - (a) $\sin at$ (b) $\frac{1}{a}\sin at$ (c) $\sinh at$ (d) $a\sin at$
- (10) If $L^{-1}\{f(s)\}=f(t)$, then $L^{-1}\{\overline{f}(s-a)\}=\dots$
 - (a) $e^{at}f'(t)$ (b) $e^{at}f(t)$ (c) f(t) (d) None

Que.2 Answer the following (Any Ten)

20

- (1) For every element a and b in Boolean algebra B, prove that a+1=1 and $a\cdot 0=0$.
- (2) Define Boolean Algebra and state its Properties.
- (3) If a + x = b + x & a + x' = b + x' then prove that a = b.
- (4) Define Algebric and Transcendental Equation .

- (5) Find the real root of the equation $f(x) = x^3 x 1 = 0$.
- (6) Find cube root of 18.
- (7) Prove that $L(e^{at}) = \frac{1}{s-a}$, s > a.
- (8) Prove that $L(\sin at) = \frac{a}{s^2 + a^2}$, s > 0.
- (9) Find laplace transform of $t \cos at$.
- (10) Prove that $L^{-1}\left[\frac{1}{s-a}\right] = e^{at}$.
- (11) Prove that $L^{-1}[\frac{s}{s^2 + a^2}] = \cos at$.
- (12) Find the inverse Laplace transform of $\frac{s^2 3s + 4}{s^3}$.
- Que.3 (a) In every Boolean algebra B, prove that each of the binary operations (+) and (\cdot) is associative. 5
 - (b) Find the Boolean function of switching circuit given here and then it's equivalent simplified circuit, also draw the simplified circuit.

OR

- Que.3 (c) Prove that in Boolean algebra , every triple of elements a,b,c satisfies the identity ab+bc+ca=(a+b)(b+c)(c+a) .
 - (d) Find the Boolean function of switching circuit given here and then it's equivalent simplified circuit, also draw the simplified circuit.

5

- Que.4 (a) Solve the equation $f(x) = x^2 2x 5 = 0$, correct up to 3 Significant digits by using Bisection Method.
 - (b) Find the real root of the equation $f(x) = x^3 + x^2 1 = 0$ on the interval [0,1], correct up to 4 decimal places by using Iteration Method.

OR

- Que.4 (c) Find the real root of the equation $f(x) = x^3 4x 9 = 0$, correct up to 3 decimal places by using False Position Method.
 - (d) Using Newton Raphson Method find the real root of the equation $f(x) = x^3 2x 5 = 0$, correct up to 3 decimal places.
- Que.5 (a) Find Laplace transform of $\sin^3 2t$.
 - (b) If $L\{f(t)\}=f(s)$ then prove that $L\{t^n|f(t)\}=(-1)^n\frac{d^n}{ds^n}[\overline{f}(s)]$, where $n=0,1,2,\ldots$

3

(c) Evaluate $\int_{0}^{\infty} te^{-2t} \sin t \ dt$.

OR

- Que.5 (d) Find Laplace transform of $te^{-t}\sin 4t$.
 - (e) Evaluate $L\left\{\int_{0}^{t} \frac{e^{t} \sin t}{t} dt\right\}$.
 - (f) Prove that $L(\cosh at) = \frac{s}{s^2 a^2}$, s > |a|.
- Que.6 (a) Find the inverse Laplace transform of $\frac{4s+5}{(s-1)^2(s+2)}$.
 - (b) Find the inverse Laplace transform of $\frac{s}{(s+2)^2}$, by using shifting Theorem .

OR

- Que.6 (c) Find the inverse Laplace transform of $\frac{2s^2 6s + 5}{s^3 6s^2 + 11s 6}$.
 - (d) Find the inverse Laplace transform of $\frac{s^2}{(s-2)^3}$, by using shifting Theorem .

- X-

