Sardar Patel University, Vallabh Vidyanagar

B.Sc. [Semester-IV] Examinations: 2019

Subject: Mathematics

US04CMTH02

Max. Marks: 70

Differential Equations

Date: 27/04/2019, Saturday

Timing: 10.00 am - 01.00 pm

Instruction: The symbols used in the paper have their usual meaning, unless specified.

Q: 1. Answer the following by choosing correct answers from given choices.

10

[1] Integral curve of $ax^2dx = by^2dy = cz^2dz$ is given by

ral curve of
$$ax^2ax = by^2ay = cz^2az$$
 is given by
$$\begin{bmatrix} A \\ ax^3 - bx^3 - c, bx^3 - cz^3 \end{bmatrix} = c_3 \quad \begin{bmatrix} B \\ ax^3 + bx^3 - cz^3 \end{bmatrix}$$

[C]
$$ax^3 + by^3 = c_1 \cdot by^3 - cz^3 = c_2$$

$$ax^3 - by^3 = c_1, by^3 + cz^3 = c_2$$

[A]
$$ax^3 - by^3 = c_1, by^3 - cz^3 = c_2$$
 [B] $ax^3 + by^3 = c_1, by^3 + cz^3 = c_2$ [C] $ax^3 + by^3 = c_1, by^3 - cz^3 = c_2$ [D] $ax^3 - by^3 = c_1, by^3 + cz^3 = c_2$

[2] Solution of udx = vdy = wdz is given by

[A]
$$ux - vy = z$$
; $vy - wz = x$ [B] $ux - vy = c_1$; $vy - wz = c_2$

[B]
$$ux - vy = c_1$$
; $vy - wz = c_2$

[C]
$$ux + vy = z$$

[3] The equations $x - y = c_1$; $y + z = c_2$, represent integral curve of

[A]
$$dx = dy = -dz$$
 [B] $dx = dy = dz$ [C] $dx = -dy = dz$ [D] $-dx = dy = dz$

[4] The differential equation p + q = 0 is

- [A] linear partial differential equation
- [B] non-linear partial differential equation
- Paffian differential equation [C]
- none of these [D]

[5] The general solution of the partial differential equation px + qy = z is an arbitrary function F(u,v)=0, where $u(x,y,z)=c_1$ and $v(x,y,z)=c_2$ are solutions of

$$[A] dx = dy = dz$$

[B]
$$\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$$

[B]
$$\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$$
 [C] $\frac{dx}{x} + \frac{dy}{y} + \frac{dz}{z} = 0$

[6] The necessary and sufficient condition that a pfaffian differential equation $\overline{X}.d\overline{r}=0$ is integrable is that

$$[A] \ \overline{X}.curl(\overline{X}) = 0$$

[B]
$$\overline{X}.grad(\overline{X}) = 0$$

[D] $\overline{X}.grad(\overline{X}) \neq 0$

[C]
$$\overline{X}.curl(\overline{X}) \neq 0$$

[D]
$$\overline{X}.grad(\overline{X}) \neq 0$$

[7] Integral surface of the linear partial differential equation $x^2p - y^2q = z^2$ can be obtained by solving the differential equation

[A]
$$\frac{dx}{z^2} = -\frac{dy}{x^2} = \frac{dz}{y^2}$$
[C]
$$\frac{dx}{y^2} = -\frac{dy}{z^2} = \frac{dz}{x^2}$$

[B]
$$\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{z^2}$$

[C]
$$\frac{\ddot{d}x}{y^2} = -\frac{\ddot{d}y}{z^2} = \frac{\ddot{d}z}{x^2}$$

$$[D] \frac{dx}{x^2} = -\frac{dy}{y^2} = \frac{dz}{z^2}$$

- [8] A surface orthogonal to given system of surfaces cuts them at an angle measuring $[D] \frac{\pi}{6}$ [B] $\frac{\pi}{2}$ [A] π
- [9] The differential equation $z = px + qy + p^4 + q^4$ is called a
 - [A] Clairaut's equation
 - [B] Linear Partial differential equation
 - Pfaffian differential equation
 - Homogeneous differential equation [D]
- [10] The complete integral of $z = px + qy + p^2 q^2$ is given by ____, where a and b are arbitrary constants.

$$[A] z = ax + by$$

(B)
$$z = ay + bx + a^2 - b^2$$

[A]
$$z = ax + by$$

[C] $z = a^2x - b^2y$

$$[D] \quad z = ax + by + a^2 - b$$

- Answer any TEN of the following. Q: 2.
 - [1] Find the integral curves of the equations $\frac{dx}{x^2} = -\frac{dy}{v^2} = \frac{dz}{z^2}$
 - [2] Solve: $\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}$
 - [3] Find the integral curves of the equations x.dx = y.dy = z.dz
 - [4] Solve: xp + yq = 4z
 - [5] Eliminate the arbitrary function f from the function z = f(x y)
 - [6] Examine whether ax by + z = 7 is a solution of px + qy z + 7 = 0 or not.
 - [7] Obtain a differential equation of the form $\frac{dx}{P} = \frac{dy}{Q} = \frac{dy}{R}$ whose solution generates surfaces orthogonal to the surfaces $x^2 - y^2 - z^2 = c$
 - [8] Verify that the equation $z = \sqrt{2x+a} + \sqrt{2y+b}$ is the complete integral of the partial differential equation $z = \frac{1}{p} + \frac{1}{a}$
 - [9] Obtain integral curve of the linear partial differential equation $px + qy^2 = z^3$
 - [10] Find the general solution of (2D + 3D')z = 0.
 - [11] Find the complete integral of (p+q)(z-px-qy)=1
 - [12] Find the Charpit's equations for $p^3 + q^3 = 4$

Q: 3 [A] Solve:
$$\frac{dx}{2xz} = \frac{dy}{2yz} = \frac{dz}{z^2 - x^2 - y^2}$$

5

20

[B] Solve:
$$\frac{dx}{y^2(x-y)} = \frac{dy}{-x^2(x-y)} = \frac{dz}{z(x^2+y^2)}$$
OR
OR
OR

Q: 3 [A] Solve:
$$\frac{dx}{x+z} = \frac{dy}{y} = \frac{dz}{z+y^2}$$
[B] Find the orthogonal trajectories on the surface $x^2 + y^2 + 2fyz + d = 0$ of the fix curves intersecting with planes parallel to the plane XOY
5
[B] Find the orthogonal trajectories on the surface $x^2 + y^2 + 2fyz + d = 0$ of the fix curves intersecting with planes parallel to the plane XOY
5
[C] 4 [A] Prove that a necessary and sufficient condition that there exists, between two functions $u(x,y)$ and $v(x,y)$ a relation $F(u,v) = 0$ not involving x and y explicitly is that $\frac{\partial(u,v)}{\partial(x,y)} = 0$

[B] Determine whether the Pfaffian differential equation $yzdx + 2xzdy - 3xydz = 0$ is integrable or not. Find its solution if it is integrable

OR

Q: 4 [A] If $f(u,v) = 0$ is a relation between u and v , where u and v are functions of x,y,z and z is a function of x and y then prove that partial differential equation of the relation is given by

$$\frac{\partial(u,v)}{\partial(y,z)}p + \frac{\partial(u,v)}{\partial(z,z)}q = \frac{\partial(u,v)}{\partial(x,y)}$$

[B] Solve: $x^2\frac{\partial z}{\partial x} + y^2\frac{\partial z}{\partial y} = (x+y)z$

Q: 5 [A] Find the surface which is orthogonal to the surface $z(x+y) = c(3z+1)$ and which passes through the linear partial differential equation $(2xy-1)p + (z-2x^2)q = 2(x-yz)$ and also the particular integral which passes through the linear partial differential equation $(2xy-1)p + (z-2x^2)q = 2(x-yz)$ and also the particular integral which passes through the hyperbolas $x^2 - y^2 = a^2$, $z = 0$

Q: 6 [A] Prove that the equations $f(x;y,p,q) = 0$ and $g(x,y,p,q) = 0$ are compatible if $\frac{\partial(f,g)}{\partial x} + \frac{\partial(f,g)}{\partial y} = \frac{\partial f}{\partial x}$

[B] Find the complete integral of $pq = 1$

OR

Q: 6 [A] Find the complete integral of $pq = 1$

OR

Q: 6 [A] Find the complete integral of $pq = 1$

OR

Q: 6 [A] Find the complete integral of $pq = 1$

OR

Q: 6 [A] Find the complete integral of $pq = 1$

OR

Q: 6 [A] Find the complete integral of $pq = 1$

OR

[B] Verify that the partial differential equation $\frac{\partial^$

