No. of Printed Pages: 2

[A-20]

SARDAR PATEL UNIVERSITY

B.Sc. EXAMINATION (4th-Semester)

Thursday, 12th April 2018 10:00 a.m. to 01:00 p.m. Subject: PHYSICS

Course: US04CPHY02

Classical, Quantum and Nuclear Physics

Tatal	Mar	レヘ・フハ
TOTAL	IVIAL	KS: / U

				1000111	14,115170	
		symbol have their usual meanings				
(-	ii) Figure	es at the right side of questions indicate full marks	i			
Q-1	Multi	ple Choice Questions (Attempt All)			(10)	
•	(1)	The electrostatic force between two unlike	char	ges are	• •	
	- /	(a) zero	(b)	- · · · · · · · · · · · · · · · · · · ·		
		(c) repulsive	(d)	infinity		
	(2)	The value of universal gravitational constant G is				
				6.67×10 ⁺¹¹ Nm ² /Kg ²		
		(c) 9.81cm/sec ²	(d)	6.67×10 ⁻¹¹ Nm²/Kg²		
	(3)	For circular orbit the value of eccentricity				
		(a) $\epsilon > 1$	(b)	€≥1		
		(c) ∈<1	(d)	∈=0		
	(4)	At the turning point in an arbitrary potentia	l fiel	d the radial velocity is		
		(a) zero	(b)	·		
		(c) infinity	(d)	1/2		
	(5)	The concept of matter wave was suggested	by_	·		
		(a) Heisenberg	(b)	de Broglie		
		(c) Schrodinger	(d)	Laplace		
	(6)	The normalized wave function must have _		norm		
		(a) infinite	(b)	zero		
		(c) finite	(d)	complex		
	(7)	Any wave function having symmetry proper	rty is	said to be of parity		
		(a) Zero	(b)	Even		
		(c) Odd	(d)	Infinite		
	(8)	In alpha-proton reaction particle is bombarded to radioactive nuclei				
		(a) β- particle	(b)	α- particle		
		(c) Y- particle	(d)	₁H¹ –particle		
	(9)	The some artificial radioactive nuclides emi	ts	as well as electrons or		
		positrons				
		(a) X-rays	(b)	α-raγs		
		(c) Y-rays	(d)	β-rays		
	(10)	The positive electron is known as				
		(a) Electron	(b)	proton		
		(c) deuteron	(d)	positron		
Q-2 Sh	Short	Questions (Attempt any Six)			(12)	
٠,	(1)	State the Newton's law of gravitation			()	
(2) (3)		Define equipotential surface				
		State the Kepler's first law of planetary mo	tion			
	(4)	State the Replet's mist law of planetary mo				
	(5)	Define stationary states of the wave function		_		
	10)	Service Stationary States of the wave fulleth	211	PP.	TOJ	

	(6) (7) (8)	Define exothermic reaction What are transuranium elements? Define stopping power	
Q-3	(a) (b)	Derive the expressions for gravitational fields and potentials Derive the Gauss' law for electrostatic fields. OR	(3) (5)
Q-3	(a) (b)	State the laws of gravitational and electromagnetic forces Using the Gauss' law obtain the expression of Laplace equation	(3) (5)
Q-4		Derive the equation of motion of equivalent one body and explain why apple falls toward the earth and not the earth towards the apple? OR	(8)
Q-4		Discuss the motion of a particle in a central force field and prove the conservation laws of linear momentum and total energy	(8)
Q-5	(a) (b)	Discuss the Heisenberg's uncertainty principle Discuss the normalization and probability interpretation of a wave function OR	(3) (5)
Q-5	(a) (b)	Discuss the box normalization Discuss the concept of matter wave and show the experimental agreement for electron	(3) (5)
Q-6	(a)	Discuss the stationary states and energy spectra of the quantum mechanical system	(3)
	(b)	Derive the time independent Schrodinger equation OR	(5)
Q-6	(a) (b)	State and prove the Ehrenfest's theorem Discuss the conservation of probability of the wave function and derive the condition	(4) (4)
Q-7	(a)	Describe the Q-value of nuclear reaction and applying the conservation laws derive the expression of threshold energy	(5)
	(b)	Describe transmutation by neutrons OR	(3)
Q-7	(a)	Describe the experiment for the disintegration of nuclei by α -particle with schematic diagram and illustrate various alpha-proton reactions	(5)
	(b)	Describe transmutation by deuterons	(3)
Q-8	(a)	Discuss the production of electron and positron with necessary conditions of mass and energy	(4)
	(b)	Write note on transuranium elements	(4)
Q-8	(a)	OR Discuss the method of measurement of velocity and energy of α -particle with schematic diagram of the deflection chamber	(4)
	(b)	Discuss the method of measurement of range, ionization and stopping power	(4)