SEAT No._ No. of Printed Pages: 2 [A-10] ## SARDAR PATEL UNIVERSITY ## B. Sc. (Semester-IV) EXAMINATION Monday, 9th April 2018 Subject: INORGANIC CHEMISTRY (US04CCHE01) (UNDER CBCS) JUNE 2010 BATCH | Time | e: 10.00 am To 1.00 pm | Total Marks | : 70 | | | |------------------|--|--|---|------|--| | Q-1
1. | Multiple choice questions: The standard reduction potential vaseries are negative excepting for | | nents of the 1 st transition | [10] | | | | (a) Cu (b) Cu | | (d) Mn | | | | 2. | is not π - acid ligand. | (0) 01 | (d) Will | | | | _, | | (c) CNP | (d) PCI. | | | | 3. | (a) NH_3 (b) Co $[Ni(H_2O)_6]^{2+}$ is blue green whereas [1] | Vi(NH ₂), l ²⁺ ic | (u) 1 C13 | | | | J, | (a) yellow (b) red | (c) blue | (d) blue green | | | | 4. | Which of the following are fulmination | ` , | (d) blue green | | | | जि. | (a) TiN, ZrN, HfN (b) VN, NbN, WN (c) Ag ₃ N, AuN, Hg ₃ N ₂ (d)TiC,VC,TaC | | | | | | | (c) $A g_2 N A y N H g_2 N_2$ | (d)TiC VC T | , m.,
aC | | | | 5. | complex ion whose central | metal ion obey F. | A N rule | | | | ٥. | (a) $[Co(NH_3)_6]^{3+}$ (b) $[Fe(CN)_6]^{3-}$ | (c) [Co(NH ₂ |)(1 ²⁺ (d) [Cu(NH ₂)(1 ²⁺ | | | | 6. | | | | | | | 0, | Which of the following square planar complexes exist as cis and trans isomeric form? | | | | | | | (a) Ma_2b_2 (b) Ma_4 | (c) Ma ₂ h | (d) Mahed | | | | 7. | The most characteristics oxidation sta | | | | | | , . | (a)+1 (b) +4 | | | | | | 8. | Which of the following is not soft acid? | | | | | | ٠. | (a) Li ³⁺ (b) Cu ⁺ | (c) $A1^{3+}$ | (d) CO_2 | | | | 9. | SnS ₂ is more acidic than SnS accordi | | (=) 0 0 2 | | | | | | | | | | | | (a) Arrhenius concept (b) Usanovich con
(c) Lewis concept (d) Bronsted-Low | | d-Lowwry concept | | | | 10. | is not liqu id at ordinary temperature. | | | | | | | (a) Ni(CO) ₄ (b) Fe(CO) ₅ | | (d) Cr(CO) ₆ | | | | | (-) ()3 | (-)()3 | (-)()0 | | | | Q-2 | Attempt any six: | | | [12] | | | 1. | Why d-block elements show variable | e oxidation states | > | • • | | | 2. | | | | | | | 3. | Give the application of magnetic moment values. | | | | | | 4. | Define EAN of central metal ion in coordination compound and calculate EAN | | | | | | | of Ni-atom in [Ni(CO) ₄]. | | | | | | 5. | What is Lanthanide contraction? | | | | | | 6. | List the modern methods used for the separation of lanthanides. | | | | | | 7. | Water is an amphoteric solvent, expl | _ | | | | | 8 | Give the structure of Fe ₂ (CO) ₁₂ | | | | | CP. T. 0) | Q-3 | | | | | |------------|--|--------------|--|--| | (a) | Write the name, symbol, complete and valence shell electronic configuration of 2 nd transition series elements. | | | | | (b) | Discuss the variation in ionization energies of d-block elements as we moving across a period and form top to bottom in group IIIB. | [04] | | | | 0.5 | OR | | | | | Q-3
(a) | Explain: "K ₂ [PtCl ₆] is well known compound of Pt(IV) whereas K ₂ [NiCl ₆] does not exist at all." | [04] | | | | (b) | Discuss the position of d-block elements in the periodic table | [04] | | | | Q-4
(a) | Deduce the formula for calculating the magnetic moment of transition metal complexes. | [04] | | | | (b) | Explain the purple colour of octahedral $[Ti(H_2O)_6]^{3+}$ ion by d-d transition. OR | [04] | | | | Q-4 | | | | | | (a) | Discuss in brief the catalytic activities shown by the 1 st transition series elements and their compounds. | [04] | | | | (b)
Q-5 | Give the brief account on metallic carbides of transition metal. | [04] | | | | (a)
(b) | Discuss the basic postulates of Werner's coordination theory. Write note on optical isomerism of octahedral complexes. OR | [04]
[04] | | | | Q-5 | OR | | | | | (a) | Describe a chemical method to distinguish between cis and trans isomers of the complex [Pt(NH ₃)Cl ₂] ⁰ . | [04] | | | | (b) | | | | | | Q-6 | | | | | | (a) | What are Actinides? Write their atomic numbers, symbols, names and electronic configurations. | [04] | | | | (b) | Discuss the various oxidation states of Actinides. OR | [04] | | | | Q-6 | | , a | | | | (a) | Discuss the position of lanthanides in the periodic table. | [04] | | | | (b) | Discuss the ion-exchange method for Lanthanides. | [04] | | | | Q-7 (a) | Give brief account on Usanovich concept of acid-base. | LUA. | | | | (b) | Discuss the liq. Ammonia as non-aqueous solvent with respect to precipitation reactions and redox reactions | [04]
[04] | | | | | OR | | | | | Q-7 | | | | | | (a) | Discuss the SO ₂ as non-aqueous solvent with respect to metathetical reactions and acid-base reactions. | [04] | | | | (b) | Explain Arrhenius acid-base concept with its utility and limitations. | [04] | | | | Q-8 | Discuss the preparation, properties, structure and hybridization in $Mn_2(CO)_{10}$. OR | [08] | | | | Q-8 | Discuss the structure and nature of M-CO bonding in metal carbonyl. | [08] | | | | | | | | |