(17)

No. of printed pages:02

SARDAR PATEL UNIVERSITY

B.Sc. (SEM-IV) Examination(Regular & NC) Wednesday, 13th April, 2016 USO4EMTHO5: (Calculus and Algebra-2)

Time: 10:30 a.m. to 12:30 p.m.

Maximum Marks: 70

Note: Figures to the right indicate marks to the questions.

Q.1	Answer the following by selecting the correct choice from the given options. If $A \subseteq \mathbb{R}^2 = 0$. Then	[10
(1)	If $AC-B^2 = 0$, Then (a)local minimum and local maximum of f do not exist (b)we can not conclude anything (c) $f(a,b)$ is a local maximum of f (d) $f(a,b)$ is a local minimum of f	
(2)	If $f(x,y) \le f(a,b)$ for all $(x,y) \in E \subset R^2$, then f is said to be	
, - /	(a) local extreme at (a,b) (b)global minimum at (a,b)	
	(c) global maximum at (a,b) (d)constant value at (a,b)	
(3)	If $f(x,y) = x^3 + y^3$, $grad.f = \underline{\hspace{1cm}}$ (a) $3x^2\bar{\iota} + 2y\bar{\jmath}$ (b) $3x^2\bar{\iota} - 2y\bar{\jmath}$ (c) $3x\bar{\iota} - 2y\bar{\jmath}$ (d) $3x^2\bar{\iota} + y^2\bar{\jmath}$	
(4)	$\nabla (\nabla f) = \underline{\qquad}$	
(5)	(a) 0 (b) $(\nabla f)^2$ (c) $2\nabla f$ (d) $\nabla^2 f$ Divergence of \bar{v} is denoted by	
(5)	(a) $\nabla \times \vec{v}$ (b) $\nabla \vec{v}$ (c) $\nabla \cdot \vec{v}$ (d) $\nabla^2 \cdot \vec{v}$	
(6)	If $\vec{r} = x\bar{\iota} + y\bar{\jmath} + z\bar{k}$, then $\frac{\partial r}{\partial y} = \underline{\hspace{1cm}}$	
V-1		
	(a) $\frac{y}{r}$ (b) 1 (c) $\frac{r}{y}$ (d) y	
(7)	If $\nabla \cdot V = 0$ Then V is called	
	(a) Laplacian (b) Harmonic (c) Irrotational (d) Solenoidal	
(8)	$\nabla \times (\nabla f) = \underline{\qquad}$	
(0)	(a) -1 (b) $\overline{0}$ (c) 1 (d) 0	
(9)	For an element 'a' in Boolean Algebra $a \cdot 0 = \underline{}$ (a) a (b) 1 (c) 0 (d) a'	
(10)	If $a \in B$. Then $a+a'=$	
(10)	(a) a (b) a' (c) 0 (d) 1	
Q.2	Answer ANY TEN of the following:	[20]
(1)	Define stationary point.	
(2)	Find A, B, C for the function $x^4 - 2x^2 - 2y^2 + 4xy + y^4$.	
(3)	Find stationary point of $y^2 + x^2y + x^4$	
(4)	Define: Gradient of scalar field.	
(5)	Find Gradient of a function $f(x,y) = logr$, where $\bar{r} = x\bar{\iota} + y\bar{\jmath}$	
(6)	Prove that $\nabla (f+g) = \nabla f + \nabla g$.	
(7)	Define: The divergence of a vector field.	
(8)	Prove that $\nabla \times (f\bar{v}) = f(\nabla \times \bar{v}) + \nabla f \times \bar{v}$.	
(9)	Define : The curl of a vector field.	
(10)	Write distribution law for Boolean Algebra.	
(11)	Write any two laws of compliment in Boolean Algebra.	
(12)	Draw the network represented by following Boolean algebra.	
	x(xy + x' + xy')	

- Q.3 Investigate the maxima and minima of the function $f(x,y) = x^3 + y^3 - 63(x+y) + 12xy$. (10)OR
- Q.3 A rectangular box open at the top is to have a volume of $32 m^2$. Find the dimension of box so (10)that the total surface area is minimum.
- Q.4 (a) (5)
- Find gradient of the function $f(x,y)=(x^2+y^2+z^2)^2$ at (1,2,3) . Show that the function $f(x,y)=\frac{x}{(x^2+y^2)}$ is a harmonic function. (b) (5)

- Find directional derivative of $f(x, y, z) = 4xz^3 3x^2y^2z$ at (2, -1, 2) in the direction of (a) (5) $\bar{a} = 2\bar{\imath} - 3\bar{\imath} + 6\bar{k} .$
- Find unit normal vector to the surface $z^2 = (x^2 + y^2) at (3,4,5)$. (b) (5)
- Q.5 Show that $\nabla(\bar{r}^n\bar{r})=(n+3)\bar{r}^n$ where $\bar{r}=x\bar{\iota}+y\bar{\jmath}+z\bar{k}$, $r=|\bar{r}|$. (a) (5)
- (b) Show that $\nabla (\nabla \times \overline{\mathbf{v}}) = 0$. (5)

OR

- Verify $\nabla(f\overline{v}) = f(\nabla\overline{v}) + \overline{v}\nabla f$ for $f = e^{xyz}$ and $\overline{v} = ax\overline{t} + by\overline{j} + cz\overline{k}$. (a) (5)
- Show that $\nabla(\frac{\mathbf{r}}{\mathbf{r}^3}) = 0$. (b) (5)
- (a) In every Boolean algebra (B) each of the binary operations (+) and (\cdot) are associative. (5)
- (b) Simplify following function and draw the network represented by them. (5)
 - (1) 1+x (2) x · 0 (3) x + xy'

Q.4

Q.5

Q.6

OR

- Q.6 (a) State and prove De-Morgan's law for Boolean algebra (B). (5)
- (b) Find Boolean function for the following circuit. Simplify it and draw simplified circuit. (5)

