No. of printed pages:02

SARDAR PATEL UNIVERSITY

B.Sc. (SEM-IV) Examination(Regular & NC)

Wednesday, 13th April, 2016

USO4EMTHO1: (Boolean Algebra and Laplace Transforms)

Time: 10:30 a.m. to 12:30 p.m.	
Note: Figures to the right indicate marks to the questions	

Maximum Marks: 70

Q.1	Answer the followi	ng by selecting the corre	ct choice from the given options
	(* ************************************	0 ,	

[10]

- (1)a + 1 = (b) 0 (c) 1 (d) none (a) a
- a∙ a′ = (2)(a) 0 (b) a (c) 1 (d) a'
- If a and b are two elements of B, then a ≤ b implies ____ (3) (a) ab = 0 (b) ab' = 0 (c) aa' = 0 (d) ab' > 0
- In Bisection method, x^3 9x+1 = 0; a = 2 and b = 3 then $x_0 =$ (4)(b) 3 (c) 1.5 (d) 2.5 (a) 2
- (5) Newton Raphson method is used for ___ (a) Interpolation (b) approximation of root of an equation (c) approximation of derivative of a function (d) none
- (6)(a) $\frac{a}{s^2-a^2}$ (b) $\frac{1}{s^2-a^2}$ (c) $\frac{a}{s^2+a^2}$ (d) $\frac{1}{s^2+a^2}$
- (7)
- $L[e^{at}] =$ (8)
- (9) (b) e^{at} (c) $e^{at}\cos bt$ (d) $\cosh at$ cos at (a)
- (10)(b) cos at (c) sinh at (d) sin at

[20]

Q.2 Answer ANY TEN of the following:

- Define: Boolean Algebra and there properties. (1)
- State principal of duality. (2)
- For a \in B, prove that $a \cdot 0 = 0$ (3)
- Define Algebraic equation with example. (4)
- Define Transcendental equation with example. (5)
- When iteration method is applicable to find root of f(x)=0? (6)
- (7)Define Laplace Transform.
- State Linearity Property. (8)
- (9) State First shifting Theorem.
- Define Inverse Laplace Transform. (10)
- State shifting property for Inverse Laplace transform. (11)
- (12)State Convolution Theorem.

Q.3	SARDOR PATEL UNIVERSITY		
(a)	In every Boolean Algebra B, Prove that binary operation (+) is associative.	[5]	
(b)	Prove that the element a' associated with element a in a Boolean algebra is unique.	[5]	
	OR STATE OF THE ST		
Q.3 (a)			
(b)	State and prove De-Morgan's laws for Boolean algebra B. Draw the network represented by Boolean function of the state of	[5]	
(-/	Draw the network represented by Boolean function $x(xy+x'+xy')$ and simplify it.	[5]	
Q.4			
(a)	Find the real root of the equation $f(x) = x^3 - x - 1 = 0$, correct up to 3 decimal places by	[5]	
	using disection Method.	[5]	
(b)	Find the real root of the equation $f(x) = x^3 + x^2 - 1 = 0$, correct up to 4 decimal places by using Iteration Method.	[5]	
Q.4	OR Section 1997 And the section of t		
	Find the analysis of the second of the secon		
(a)	Find the real root of the equation $f(x) = x^3 - 2x - 5 = 0$, correct up to 3 decimal places by using False Position Method.	[5]	
(b)	Find the real root of the equation $2x = cosx + 3$, correct up to 3 decimal places by using Aitken's Δ^2 Method.		
Q.5			
(a)	Prove that L(sinh at) = $\frac{a}{s^2 - a^2}$, $s > a $	[5]	
(b)	Find Laplace transform of sin2t sin3t		
• •	3112¢ 3113¢	[5]	
	OR		
Q.5 (a)	, n		
(ω)	If L{f(t)} = f(s) then prove that L{ $t^n f(t)$ } = $(-1)^n \frac{d^n}{ds^n} [\overline{f}(s)]$, where n= 0,1,2,	[5]	
(b)	Evaluate $\int_0^\infty te^{-2t} \sin t dt$		
Q.6		[5]	
Q.U	Find the inverse Laplace transform of $\frac{s+3}{s^2-4s+13}$, by using shifting theorem.		
		[10]	
	OR sigmaxs show any pre-sundaniA such set		
Q.6	Apply convolution theorem to evaluate $L^{-1}\left(\frac{s}{(s^2+a^2)^2}\right)$.	[10]	
	o Carrier and a contract of the contract of th		