C27)

1

No. Of Printed Pages: 3

SARDAR PATEL UNIVERSITY

B.Sc. EXAMINATION (SEMESTER: IV) 2016

April, 18th 2016.

Monday

Subject: Probability Distributions

Subject code: USO4CSTA02

Time: 10.30	a.m.	to 01	.a 0 6 .	m.
-------------	------	-------	-----------------	----

Marks: 70

[10]

- **Multiple Choice Questions** For a binomial distribution with n = 7 and p = 0.50, we get -----(1)
 - (a) P(X = 3) < P(X = 4)

(b) P(X = 3) > P(X = 4)

(c) P(X = 3) = P(X = 4)

- (d) $P(X = 3) \neq P(X = 4)$
- If $M_X(t) = e^{3(e^t 1)}$ is the m.g.f. of a random variable X then X \sim ---- distribution (2) (a)binomial (b)Poisson (c)geometric (d) none
- If $f(x) = \frac{1}{21}$, $x = 1, 2, \dots 21$.

= 0 , otherwise; is the p.m.f. of X then P(3 < X < 9) = -----.

- (b) $\frac{8}{21}$
- (c) $\frac{2}{21}$
- (d) none

If $f(x) = kx^2$, 0 < x < 1. (4)

= 0 , otherwise ; is the p.d.f. of X then k = -----

- (b) 2

- If $M_X(t) = e^{25t(1+t)}$ is the m.g.f. of a continuous random variable X then (5) $X \sim$ ----- distribution.
 - (a) exponential
- (b) gamma
- (c) normal
- If $M_X(t) = \frac{e^{3t} e^{2t}}{t}$, $t \neq 0$, is the m.g.f. of a random variable X then $X \sim ---$ distribution
 - (a) normal
- (b) exponential (c) continuous uniform
- (d) none
- If X_1 and X_2 are two independent N(5,2) and N(2,1) distributions respectively then the distribution of $Y = X_1 - X_2$ follows ----- distribution.
 - (a) N(3,2)
- (b) N(3,3)
- (c) N(3,4)
- (d) none
- If X_1 and X_2 are two independent b(5,0.25) and b(4,0.25) distributions (8) respectively then the distribution of $Y = X_1 + X_2$ follows ----- distribution.
 - (a) b(9, 0.25)
- (b) b(9, 0.20)
- (c) b (9, 0.10)
- If $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2$ is the sample variance of a random sample from $N(\mu \, , \, \sigma^2)$ then $\frac{nS^2}{\sigma^2} \sim \frac{1}{2}$ distribution.

2

- (c) $\chi^2_{(1)}$
- (d) none

- (a) $\chi^2_{(n)}$ (b) $\chi^2_{(n-1)}$ (10) If $X \sim F_(r_1, r_2)$ then $\frac{1}{X} \sim$ ----- distribution.
 - (a) $F_{(r_2, r_1)}$
- (b) $F_{1}(r_{1} * r_{2})$ (c) $F_{1}(r_{1}/r_{2})$
- (d) none
- Short Questions: (Attempt any TEN): Two Marks each.

[20]

- Obtain recurrence relation for the Binomial distribution.
- If $P(t) = e^{2(t-1)}$ is the p.g.f. of a random variable X then find P(X = 0), P(X > 1) and mean.

If $M_X(t) = (1-2t)^{-1}$ is the m.g.f. of a random variable X then identify the (3) distribution of X and state its mean, variance and write its p.d.f. (4) If $f(x) = \frac{1}{6}$, -3 < x < 3; = 0, otherwise, is the p.d.f. of X then find mean and variance. (5) If $X \sim N$ (25, 25) distribution then find (i) $P(20 \le X \le 40)$ and P(|X - 25| < 5). (6) If $f(x) = k \times (1 - x)$, 0 < x < 1 and zero otherwise, is the p.d.f of X then find (i) k and (ii) P(X < 0.50). (7) If X and Y follow independently P(2) and P(1) distribution. What is the distribution of Z = X + Y. State the result you use. (8) If $X \sim b$ (100, 0.50) distribution then find approximately P(X = 50) and $P(55 \le X \le 65)$. If $X \sim P(64)$ then find P(X = 80). State the result you used. (9) If $X \sim N(0, 1)$ distribution then find $P(X^2 > 3.841)$ and $P(X^2 < 3.841)$. (10)Define F – distribution. Write the p.d.f. of $F_{(2,2)}$ distribution. (11)If X_1 , X_2 ,...... X_n denote a random sample of size n from a population having (12) mean μ and variance σ^2 . If $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ then show that $E(\bar{X}) = \mu$. 3 Define discrete uniform distribution. Find its mean and variance. (a) [5] (b) The number of arrivals per hour at an automatic teller machine (ATM) follows [5] Poisson distribution with a mean of 2 arrivals/hour. What is the probability that (i) more than three (ii) two or less (iii) Exactly 2, arrivals occur in an hour? OR 3 Define negative binomial distribution. Obtain its mean and variance. [6] (b) It was claimed that 1 out of 4 dentists recommend sensodyne tooth paste to his [4] patients to prevent cavities. Suppose that the claim is true. If 10 dentists are selected independently and at random, let X be the number of dentists who recommend sensodyne tooth paste to his/her patients (i) How is X distributed (ii) Give mean and variance of X. (iii) Determine $P(X \ge 4)$, P(X = 2). 4 Define Normal distribution. Obtain its m.g.f. and hence or otherwise find mean [10] and variance. Also find c.g.f. and β_1 and β_2 . 4 Define continuous uniform distribution defined over an interval (a, b), $a, b \in R$. [10] Find m.g.f. and hence find mean and variance. Obtain its c.d.f. and find the expression for p^{th} quantile. Hence or otherwise find Q_1 , D_5 and P_{75} . If X_1 and X_2 are two independently distributed as N(10, 25) and N(2, 144) 5 [5] respectively. Show by using m.g.f. that $Y = X_1 + X_2 \sim N(12,169)$. Hence find $P(Y \le -25)$ and $P(-25 \le Y \le 38)$. (b) If $X_1, X_2, ... X_n$ are independent random variables with m.g.f.s. $Mx_1(t), Mx_2(t),$ [5] $Mx_n(t)$ then prove that the m.g.f. of $Y = \sum_{i=1}^{n} X_i$ is given by $My(t) = \prod_{i=1}^{n} Mx_i(t)$. 5 If X₁, X₂,...... X_n are n independent random variables with m.g.f. [5] $\mathsf{M}_{\mathsf{X}\,\mathsf{i}}\,(\mathsf{t}) = e^{\lambda_i(e^t-1)}$, i = 1,2,......,n then find the m.g.f. of Y = $\sum X_i$. Identify

the distribution of Y and state its p.d.f. and mean.

- (b) If X_1 , X_2 ,...... X_n are n independent N (μ, σ^2) variables then find the m.g.f. of \bar{X} and identify the distribution. [5]
- 6 (a) If X_1 , X_2 ,...... X_n denote a random sample of size n from a population having mean μ and variance σ^2 . If $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ and $S'^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$. Obtain $E(S^2)$ and $E(S'^2)$
 - (b) If $X \sim F_{(2,r)}$ distribution, $r \ge 2$ then prove that $P(X \ge k) = (1 + \frac{2k}{r})^{-\frac{r}{2}}$ [5]
- 6 (a) A random sample of size n = 36 is to be taken from N(15,144) distribution. Find P ($13 \le \overline{X} \le 17$) and P ($\overline{X} \ge 19$). Also state E(\overline{X}), E($3\overline{X} + 5$), V(\overline{X}) and V($3\overline{X} + 5$).
 - (b) If X_1 , X_2 ,...... X_n denote a random sample of size n from a population having mean μ and variance σ^2 . If $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ then show that $V(\bar{X}) = \frac{\sigma^2}{n}$.