SL

10

(A-35) Seat No: ____

No of printed pages: 3

SARDAR PATEL UNIVERSITY

B.Sc.(SEMESTER - IV)(JUNE 2010 BATCH) EXAMINATION - 2016

Maria day, 2nd May, 2016 MATHEMATICS: US04CMTH01 (Linear Algebra)

(Linear Algebra)	
Time: 2:30 p.m. to 5:30 p.m.	Maximum Marks : 70
Que.1 Fill in the blanks.	
(1) In any vector space V , α $u=\alpha$ $v\Rightarrow u$ v , $\forall u,v\in V$,	$\alpha \in \mathbb{R}, \alpha \neq 0$
$(a) = (b) < (c) > (d) \neq$	
(2) is a subspace of vector space V .	
(a) $\{1\}$ (b) 1 (c) 0 (d) $\{0\}$	
(3) $[(0,0,2), (0,3,1)] = \dots$	
(a) xy-plane (b) yz-plane (c) zx-plane (d) V_3	
(4) Any set containing zero vector is set .	
(a) LI (b) LD (c) empty (d) neither LI nor LD	
(5) The vectors $(a,b)\&(c,d)$ of V_2 are LD iff	
(a) $ad = bc$ (b) $ab = cd$ (c) $ac = bd$ (d) $a = bd$	c
(6) $\{x^2 - 1, x + 1, \dots \}$ is LI set.	
(a) $1-x^2$ (b) x^2+x (c) $x-1$ (d) x^2-x-1	- 2
(7) dim $P_3 =$	
(a) 1 (b) 2 (c) 3 (d) 4	
(8) $T: V_3 \to V_1$ defined by $T(x_1, x_2, x_3) = \dots$ is not linear	map.
(a) $x_1 + x_2 + x_3^2$ (b) $x_1 + x_3$ (c) $x_1 + x_2 + x_3$	(d) $x_1 - x_2$
(9) If $T: V_1 \to V_2$ defined by $T(x) = (x,0)$ then $T(x+y) = \dots$	
(a) (x,y) (b) $(x+y,0)$ (c) $(x,0)$ (d) $(y,0)$	
(10) If $T: V_1 \to V_3$ defined by $T(x) = (x, 2x, 3x)$ then	
(a) $T(x+y) \neq T(x) + T(y)$ (b) $T(\alpha x) \neq \alpha T(x)$ (c) T is not li	near (d) T is linear
Que.2 Attempt the following (Any Six)	
(1) For any vector space V, prove that $\alpha \; \bar{0} = \bar{0} \; , \forall \; \mathrm{scalar} \; \alpha$.	

- (2) For any vector space V, prove that (-1)u=-u , $\forall \ u \in V$.
- (3) Is the set $\{(1,0,0),(2,0,0),(0,0,1)\}$ LI in V_3 ?

12

- (4) Is the set $\{(1,1,0),(1,-1,0),(1,1,-1)\}$ LD in V_3 ?
- (5) Is the set $\{\sin^2 x, \cos 2x, 1\}$ LD?
- (6) Show that the set $\{(1,1,1),(1,-1,1),(0,1,1)\}$ is a basis of V_3 .
- (7) Show that the map $T: V_3 \to V_3$ defined by $T(x_1, x_2, x_3) = (x_1, x_2, 0)$ is linear.
- (8) Let $A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 1 & 0 \end{bmatrix}$. Determine a linear map $T: V_3 \to V_2$ such that $A = (T: B_1, B_2)$, where $B_1 \& B_2$ are standard bases for $V_2 \& V_3$ respectively.
- Que.3 (a) Let R^+ be the set of all positive real numbers . Define the operations as bellow: u+v=uv, $\forall \ u,v\in R^+$; $\alpha u=u^{\alpha}, \forall \ u\in R^+, \alpha\in \mathbb{R}$. Prove that R^+ is a real vector space .
 - (b) A nonempty subset S of a vector space V is a subspace of V iff $\alpha u + \beta v \in S$, $\forall \ u \ , \ v \in S$ and for all scalar $\alpha \ , \ \beta$.

OR

- Que.3 (a) Show that $V_3 = \{(x_1, x_2, x_3) \mid x_1, x_2, x_3 \in \mathbb{R}\}$ is a real vector space under usual addition and scalar multiplication .
 - (b) Is the set $\{(x_1, x_2, x_3) \in V_3 / x_2 = \sqrt{2}x_1\}$ subspaces of V_3 ? Verify it .
- Que.4 (a) Let S be a nonempty subset of a vector space V then prove that [S] is the smallest subspace of V containing S .
 - (b) In V_2 , show that (3,7) belongs to [(1,2),(0,1)] but does not belongs to [(1,2),(2,4)].

4

3

5

5

3

4

OR

- Que.4 (a) If $S = \{(1, -3, 2), (2, -1, 1)\}$ is a subset of V_3 , then show that $(1, 7, -4) \in [S]$ but (2, -5, 4) does not belongs to [S].
 - (b) If S is a nonempty subset of a vector space V then prove that $[\ S\]=S$ iff S is a subspace of V .
- Que.5 (a) Is the set $S = \{(1,1,2), (-3,1,0), (1,-1,1), (1,2,-3)\}$ LD? If set is LD then locate one of the vectors that belongs to the span of previous ones. Also find a LI subset A of S such that [A]=[S].
 - (b) In any vector space V , prove that if a set is LI then any subset of it is also LI .

OR.

- Que.5 (a) Is the set $S = \{(1,1,2), (-3,1,0), (4,0,2), (1,-1,1)\}$ LD? If set is LD then locate one of the vectors that belongs to the span of previous ones. Also find a LI subset A of S such that [A]=[S].
 - (b) Let V be a vector space then prove that The set $\{v_1,v_2\}$ is LD iff $v_1\&v_2$ are collinear .
- Que.6 (a) If U and W are subspaces of a finite dimensional vector space V then prove that $dim(U+W)=dim(U)+dim(W)-dim(U\cap W)\;.$

(b) In a vector space V , If $B=\{v_1,v_2,....,v_n\}$ span V then prove that the following two conditions are equivalent

(i) B is LI

(ii) If $v \in V$, then the expression $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$ is unique.

OR

Que.6 (a) Let the set $\{v_1, v_2,, v_k\}$ be a linearly independent subset of an n - dimensional vector space V . then prove that we can find vectors $\{v_{k+1}, v_{k+2},, v_n\}$ such that the set $\{v_1, v_2,, v_k, v_{k+1}, ..., v_n\}$ is a basis for V .

(b) Is the subset $S = \{x-1, x^2+x-1, x^2-x+1\}$ from a basis for vector space P_2 ? Verify it . 3

5

4

4

- Que.7 (a) If $T:U\to V$ is one one and onto linear map, then prove that $\{T(u_1),T(u_2),....,T(u_n)\}$ is LI set in V iff $\{u_1,u_2,....,u_n\}$ is LI in U.
 - (b) Determine a linear map if $T: V_2 \to V_4$ defined by T(1,1) = (0,1,0,0), T(1,-1) = (1,0,0,0).

OR

- Que.7 (a) Let U and V be a vector space and $T: U \to V$ be any map then prove that T is linear iff $T(\alpha u_1 + \beta u_2) = \alpha T(u_1) + \beta T(u_2)$, for all scalar $\alpha, \beta, \forall u_1, u_2 \in U$.
 - (b) Determine a linear map if $T: V_2 \to V_4$ defined by T(1,1) = (1,1,1,1), T(1,-1) = (-1,-1,-1,-1).
- Que.8 (a) Let a linear map $T: V_2 \to V_2$ be defined by T(x, y) = (x, -y). Find $(T: B_1, B_2)$, where $B_1 = \{(1, 1), (1, 0)\}$; $B_2 = \{(2, 3), (4, 5)\}$

OR

Que.8 (a) Let a linear map $T: V_3 \to V_2$ be defined by T(x,y,z) = (x+y,y+z). Find $(T:B_1,B_2), 8$ where $B_1 = \{(1,1,2/3), (-1,2,-1), (2,3,1/2)\}$; $B_2 = \{(1,3), (1/2,1)\}$

