SARDAR PATEL UNIVERSITY

BSc (I Sem.) Examination

Friday, 15 November 2013

$2.30-4.30 \mathrm{pm}$

US01CMTH02 - Calculus and Differential Equations

Total Marks: 70
Note: Figures to the right indicate full marks of the questions.
Q. 1 Answer the following questions by selecting the correct choice from [10] the given options.
(1)
$\frac{d^{n}}{d x^{n}}\left(x^{n}\right)=$ \qquad .
(a) $(2 n)!$
(b) 0
(c) 1
(d) nl
(2) If $y=e^{4 x}+e^{2 x}$ then $y_{n}=$
\qquad
(a) $\mathrm{e}^{2 \mathrm{x}}\left(2^{\mathrm{n}} \mathrm{e}^{2 \mathrm{x}}+1\right)$
(b) $2^{i n} e^{2 x}\left(2^{n} e^{2 x}+1\right)$
(c) $e^{2 x}\left(2^{n} e^{2 x}-1\right)$
(d) None
(3) If $y=\sin 3 x$ then $y_{10}=$
\qquad
(a) $3^{10} \sin 3 x$
(b) $3^{10} \cos 3 x$
(c) $-3^{10} \sin 3 x$
(d) $-3^{10} \cos 3 x$
(4) $\frac{d s}{d t}=$ \qquad $-$
(a) $\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$
(b) $\sqrt{1+\left(\frac{d x}{d t}\right)^{2}}$
(c) $\sqrt{1 \ldots\left(\frac{d y}{d t}\right)^{2}}$
(d) None
(5) For a curve $r=f(\theta), \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}=$ \qquad $+$
(a) $\frac{d f}{d \theta}$
(b) $\frac{d r}{d \theta}$
(c) $\frac{d s}{d \theta}$
(d) $\frac{d \theta}{d s}$
(6) The reciprocal of curvature at a point is known as \qquad at the point.
(a) radius of curve
(b) radius of curvature
(c) rate of bending
(d) None
(7) The degree of homogeneous function $f(x, y)=\frac{x^{2}+y^{2}}{x-y}$ is \qquad .
(a) 0
(b) 3
(c) 2
(d) 1
(8) Partial derivative of $z=f(x, y)$ w. r. $\mathrm{t} x$ is denoted by \qquad .
(a) $\frac{\partial f}{\partial x}$
(b) $\frac{d f}{d \theta}$
(c) $\frac{d z}{d x}$
(d) None
(9) A differential equation of the form $y=p x+f(p)$ is known as
\qquad equation.
(a) Euler's
(b) Clairut's
(c) Exact
(d) None
(10) $\left(x^{2}-2 x y-y^{2}\right) d x-(x+y)^{2} d y=0$ is \qquad differential equation.
(a) Clairut's
(b) not exact
(c) exact
(d) None
Q. 2 Answer the following questions in short. (Any Ten)
[20]
(1) Find the angle between radius vector and tangent to the curve $r=a(1-\cos \theta)$
(2) If $y=\cos 3 x$ then find y_{4}
(3) Find y_{n} if $y=x \sin x$
(4) For the curve $y=a \sin 2 x$, find $\frac{d s}{d x}$
(5) Find radius of curvature at any point on the curve $S:=8 a \sin ^{2} \frac{\psi}{6}$
(6) Find ρ for the curve $r=a(1+\cos \theta)$
(7) If $u=\frac{x^{3}+y^{3}}{x y}$ then find $x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}$
(8) Verify Euler's theorem for the function $z=x^{2} y-x y^{2}$
(9) For $u=x^{3}-3 x y^{2}$, prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
(10)

Check whether the differential equation $x d x+y d y+\frac{x d y-y d x}{x^{2}+y^{2}}=0$ is Exact or not.
(11) Solve: $y=p x+\frac{3}{p}$.
(12) Solve: $y^{2}-2 p x y+p^{2}\left(x^{2}-1\right)=m^{2}$
Q. 3
(a) State and prove Leibniz theorem.
(b) If $y=e^{a x} \sin (b x+c)$ then find y_{n}.

OR
Q. 3
(a) In usual notations prove that $\tan \theta=\frac{r}{\frac{d r}{d \theta}}$
(b) If $y=(a x+b)^{m}$ with $m \in \mathrm{~N}$ then prove that $\mathrm{y}_{\mathrm{n}}=\frac{m!}{(m-n)!} a^{\prime \prime}(a x+b)^{m-n}$
Q. 4
(a) Find the entire length of the astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$
(b) In usual notations prove that $\rho=\frac{\left(1+y_{1}^{2}\right)^{3 / 2}}{y_{2}}$
Q. 4
(a) Show that the intrinsic equation of the curve $y^{3}=a x^{2}$ is $27 \mathrm{~s}=8 a\left(\sec ^{3} \psi-1\right)$
(b) For a polar equation $r=f(\theta)$ prove that $\frac{d s}{d \theta}=\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}$
Q. 5
(a) If $H=f(2 x \cdots 3 y, 3 y-4 z, 4 z-2 x)$ then prove that $\frac{1}{2} \frac{\partial H}{\partial x}+\frac{1}{3} \frac{\partial H}{\partial y}+\frac{1}{4} \frac{\partial H}{\partial z}=0$
(b) State and prove Euler's theorem for the function $z=f(x, y)$

OR
Q. 5
(a) If $u=\sin ^{-1}\left(\frac{x^{2} y^{2}}{x+y}\right)$ then prove that $x \cdot \frac{\partial u}{\partial x}+y \cdot \frac{\partial u}{\partial y}=3 \tan u$
(b) If A, B, C are angles of a $\triangle A B C$ such that $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=K$,
K is constant. Prove that $\frac{d B}{d C}=\frac{\tan C-\tan A}{\tan A-\tan B}$
Q. 6 Prove that the necessary and sufficient condition for the differential
equation $M d x+N d y=0$ to be exact is that $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
OR
Q. 6 Solve: $p^{2}+2 p y \cot x=y^{2}$

