(a) Euler's

SARDAR PATEL UNIVERSITY **BSc (I Sem.) Examination**

Friday, 15 November 2013

2.30 - 4.30 pm US01CMTH02 - Calculus and Differential Equations

Note	: Figures	to the	right inc	dicate fu	ıll mark	s of	the questions.	
------	-----------	--------	-----------	-----------	----------	------	----------------	--

	Total Marks	: 7
Note:	Figures to the right indicate full marks of the questions.	
Q.1	Answer the following questions by selecting the correct choice from [1 the given options.	[0]
(1)	$\frac{d^n}{dx^n}(x^n) = \underline{\qquad}$	
(2)	(a) $(2n)!$ (b) 0 (c) 1 (d) nl	
(-/	(a) $e^{2x}(2^ne^{2x}+1)$ (b) $2^n e^{2x}(2^ne^{2x}+1)$ (c) $e^{2x}(2^ne^{2x}-1)$ (d) None	
(3)	If y=sin3x then y_{10} = (a) 3^{10} sin3x	
(4)	(c) $-3^{10}\sin 3x$ (d) $-3^{10}\cos 3x$ $\frac{ds}{dt} = \frac{1}{10000000000000000000000000000000000$	
	(a) $\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$ (b) $\sqrt{1 + \left(\frac{dx}{dt}\right)^2}$	
	(c) $\sqrt{1-\left(\frac{dy}{dt}\right)^2}$ (d) None	
(5)	For a curve $r = f(\theta)$, $\sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} = $	
	(a) $\frac{df}{d\theta}$ (b) $\frac{dr}{d\theta}$ (c) $\frac{ds}{d\theta}$ (d) $\frac{d\theta}{ds}$	
(6)	The reciprocal of curvature at a point is known as at the point.	
	(a) radius of curve (b) radius of curvature (c) rate of bending (d) None	
(7)	The degree of homogeneous function $f(x,y) = \frac{x^2 + y^2}{x - y}$ is	
(8)	(a) 0 (b) 3 (c) 2 (d) 1 Partial derivative of $z = f(x, y)$ w. r. t x is denoted by	
	(a) $\frac{\partial f}{\partial x}$ (b) $\frac{df}{d\theta}$ (c) $\frac{dz}{dx}$ (d) None	
(9)	A differential equation of the form $y = px + f(p)$ is known as equation.	

(b) Clairut's

(c) Exact

(d) None

(10) $(x^2-2xy-y^2)dx-(x+y)^2dy=0$ is _ differential equation. (a) Clairut's (b) not exact (c) exact (d) None Q.2 Answer the following questions in short. (Any Ten) [20] Find the angle between radius vector and tangent to the curve (1) $r = a(1 - \cos\theta)$ (2) If $y = \cos 3x$ then find y_4 Find y_n if $y = x \sin x$ (3) (4) For the curve $y = a \sin 2x$, find $\frac{ds}{dx}$ (5) Find radius of curvature at any point on the curve $S = 8a \sin^2 \frac{\psi}{6}$ Find ρ for the curve $r = a(1 + \cos \theta)$ (6)If $u = \frac{x^3 + y^3}{xy}$ then find $x \cdot \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial y}$ (7)Verify Euler's theorem for the function $z = x^2y - xy^2$ (8)For $u = x^3 - 3xy^2$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial v^2} = 0$ (9) Check whether the differential equation $xdx + ydy + \frac{xdy - ydx}{x^2 + y^2} = 0$ is (10)Exact or not. Solve: $y = px + \frac{3}{p}$. (11)Solve: $y^2 - 2pxy + p^2(x^2 - 1) = m^2$ (12)Q.3 State and prove Leibniz theorem. (a) (b) If $y = e^{ax} \sin(bx + c)$ then find y_n. [05] OR Q.3 (a) [05] In usual notations prove that $\tan \theta = \frac{r}{dr}$ [05]If $y = (ax + b)^m$ with $m \in \mathbb{N}$ then prove that $y_n = \frac{m!}{(m-n)!} a^n (ax + b)^{m-n}$ (b) Q.4

OR

[05]

[05]

Find the entire length of the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$

In usual notations prove that $\rho = \frac{(1+y_1^2)^{\frac{3}{2}}}{2}$

(a)

(b)

Q.4

- (a) Show that the intrinsic equation of the curve $y^3 = ax^2$ is [05] $27s = 8a(\sec^3 \psi 1)$
- (b) For a polar equation $r = f(\theta)$ prove that $\frac{ds}{d\theta} = \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}$ [05]

Q.5

- (a) If H = f(2x-3y, 3y-4z, 4z-2x) then prove that $\frac{1}{2} \frac{\partial H}{\partial x} + \frac{1}{3} \frac{\partial H}{\partial y} + \frac{1}{4} \frac{\partial H}{\partial z} = 0$ [05]
- (b) State and prove Euler's theorem for the function z = f(x, y) [05]

Q.5

- (a) If $u = \sin^{-1} \left(\frac{x^2 y^2}{x + y} \right)$ then prove that $x \cdot \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial y} = 3 \tan u$ [05]
- (b) If A, B, C are angles of a \triangle ABC such that $\sin^2 A + \sin^2 B + \sin^2 C = K$, [05] K is constant. Prove that $\frac{dB}{dC} = \frac{\tan C - \tan A}{\tan A - \tan B}$
- Q.6 Prove that the necessary and sufficient condition for the differential [10] equation Mdx+Ndy=0 to be exact is that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

OR

Q.6 Solve: $p^2 + 2py \cot x = y^2$ [10]

 $\odot \odot \odot$