SARDAR PATEL UNIVERSITY

No. of printed pages: 2

BSC (First Semester) Examination 2013

Tuesday, $12^{\text {th }}$ November
2.30 to 4.30 pm

US01CMTH01 - Mathematics
 Analytic Geometry and Complex Numbers

Total Marks: 70
Q. 1 Answer the following by selecting correct choice from the given options.
(1)
is a closed curve.
(a) Parabola
(b) Hyperbola
(c) Ellipse
(d) Helix
(2) The curve of $y=\frac{2}{(x+1)(x-2)}$ has \qquad branches.
(a) 1
(b) 3
(c) 2
(d) 4
(3) The curve $x y=25$ is symmetric with respect to
\qquad \ldots
(a) Origin
(b) x-axis
(c) y-axis
(d) None
(4) The perpendicular distance of line
$2 \sqrt{2}=r(\sqrt{3} \cos \theta+\sin \theta)$ from the pole is
$\begin{array}{ll}\text { (a) } 1 & \text { (b) } 2 \sqrt{2}\end{array}$ \qquad .
(b) $2 \sqrt{2}$
(c) 2
(d) $\sqrt{2}$
(5) The curve $r=2-4 \cos \theta+\sin \theta$ represnets
\qquad .
(a) Spiral
(b) rose curve
(c) limacon
(d) parabola
(6) The curve $r=3+2 \sin \theta$ is symmetric with respect to
(a) normal axis
(b) polar axis
(c) pole
(d) None
(7) if eccentricity e>1 then conic is \qquad
(c) hyperbola
(d) ellipse
(8) The centre of a circle $r=6 \sin \theta$ is
(a) $\left(-3, \frac{\pi}{2}\right)$
(b) $\left(3, \frac{\pi}{2}\right)$
(c) $(-3, \pi)$
(d) $(3, \pi)$
(9) $(\text { cis } \theta)^{\frac{1}{4}}$ has only \qquad
distinct values.
(a) $\frac{1}{4}$
(b) 1
(c) $2 q$
(d) q
(10) Cube root of unity are \qquad
(a) $1,-1$
(b) $1,-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$
(c) $1, \pm \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$
(d) $1, \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$
Q. 2 Answer the following in short (Attempt Any Ten)
(1) Find parametric equation for $\sqrt{x}+\sqrt{y}=\sqrt{a}$
(2) Discuss all symmetries of $y=\frac{4-x^{2}}{x^{2}-9}$
(3) Find equation of tangent to the curve given by $x=a \cos \theta, y=b \sin \theta$
(4) Transfer the equation $r=\tan \theta+\sec \theta$ into Cartesian form.
(5) Express the point $\left(3,40^{\circ}\right)$ in three other ways such that $-2 \pi \leq \theta \leq 2 \pi$
(6) Express the point $(\sqrt{3}, 1)$ in polar form.
(8) Find radius and centre of $r=3 \sin \theta$
(9) Find polar equation of circle whose centre is at $\left(7,60^{\circ}\right)$ and radius is 10 .
(10) If $2 \cos \theta=x+\frac{1}{x}$, then prove that $2 \cos r \theta=x^{r}+\frac{1}{x^{r}}$
(11) Find $z+\frac{1}{z}$, where $z=4+5 i$
(12) Express the complex number $z=-\sqrt{3}+i$ in modulus-amplitude form.
Q. 3
(a) If a curve is given by $x=f(t), y=g(t)$ and both x and y gets numerically large as t approaches to some number say 'a' then prove that the oblique asymptote to the curve if exist is given by $y=m x+c$ where $\mathrm{m}=\lim _{t \rightarrow a} \frac{d y}{d x}, \mathrm{c}=\lim _{t \rightarrow a}(y-m \mathrm{x})$
(b) Discuss intercepts, symmetries, asymptotes, sign of the function and hence sketch the curve given by $x y-y-2 x=0$

OR
Q. 3
(a) Find asymptotes to the curve given by $x=t+\frac{1}{t^{2}} ; y=t-\frac{1}{t^{2}}$
(b) Obtain parametric equations of cycloid.
Q. 4
(a) When a curve given by polar equation is symmetric with respect to normal axis ?Justify your answer.
(b) Sketch the curve $r=2+3 \cos \theta$

OR
Q. 4
(a) When a curve given by polar equation is symmetric with respect to polar axis ? Justify your answer.
(b) Sketch the curve $r=5 \sin 32$
Q. 5 In usual notations prove that
$r=\frac{p e}{1 \pm e \cos \theta}$

OR

Q. 5 Identify and describe the curve $r=3(1+\cos \theta)$ and its reciprocal curve.

Hence sketch them in the same frame of reference.
Q. 6
(a) State and prove De Moivres therem for complex number.
(b) Prove that,
$\frac{(\cos 5 \theta-i \sin 5 \theta)^{2}(\cos 7 \theta+i \sin 7 \theta)^{-3}}{(\cos 4 \cdot \theta-i \sin 4 \theta)^{9}(\cos \theta+i \sin \theta)^{5}}=1$

OR

Q. 6
(a) Prove that
$(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}$ $=2^{n+1} \cos ^{n}\left(\frac{\theta}{2}\right) \cos \left(\frac{n \theta}{2}\right)$
(b) Solve the equation $x^{4}-x^{3}+x^{2}-x+1=0$ by using De Moivres theorem.

$2^{x=}$

