SARDAR PATEL UNIVERSITY B.Sc.(I SEM.) (NC) EXAMINATION Thursday, 27th December, 2012 10.30 am to 12.30 pm US01CMTH02 : MATHEMATICS Calculus and Differential Equation

Total Marks: 70

Note: Figures to the right indicate full marks of the questions.

Q.1 Answer the following questions by selecting the most appropriate [10] option. Write down the option in your answer book. (1) If $y = e^{5x}$ then $y_{a} =$

(1) If
$$y = e^{3x}$$
 then $y_n = \frac{1}{(b) 5e^{5x}}$ (c) $5^n e^{5x}$ (d) $5^n e^x$
(2) If $y = \sin 7x$ then $y_n = \frac{1}{(a) 7^n \sin(7x + \frac{\pi n}{2})}$ (b) $7^n \sin(7x + \frac{\pi n}{2})$
(c) $7^n \cos(7x + \frac{\pi}{2})$ (d) $7^n \cos(7x + \frac{\pi n}{2})$
(3) For a polar curve $r=f(\theta)$, $\tan \theta = \frac{1}{(a) 7^n} \frac{r_1}{r_2}$ (b) $\frac{r_2}{r_1}$ (c) $\frac{r_1}{r}$ (d) $\frac{r}{r_1}$
(4) $\sqrt{r^2 + (\frac{dr}{d\theta})^2} = \frac{1}{(a) \frac{ds}{d\theta}}$ (b) $\frac{ds}{dr}$ (c) ϱ (d) $\frac{1}{\varrho}$
(5) For a polar curve, $\varrho = \frac{1}{(a) \frac{r^2 + r_1^2)^3}{r_2}}$ (b) $\frac{(r^2 + r_2^2)^3}{r^2 + 2r_1^2 - rr_2}$
(c) $\frac{(1 + r_1^2)^3}{r_2}$ (d) $\frac{(1 + r_2^2)^2}{r_1^2 + 2r_1^2 - rr_2}$
(c) $\frac{(1 + r_1^2)^3}{r_2}$ (d) $\frac{d^2x}{r_1 + 2r_1^2 - rr_2}$
(e) $\frac{\partial^2 x}{\partial y \partial x} = \frac{1}{(a) \frac{\partial x}{\partial x}}$ (f) $\frac{\partial^2 x}{\partial y^2}$ (c) $\frac{\partial}{\partial y} (\frac{\partial x}{\partial x})$ (d) $\frac{\partial^2 x}{\partial x^2}$
(7) Let $z = f(x, y)$ be defined on E, then $\frac{\partial x}{\partial x} dx + \frac{\partial x}{\partial y} dy = \frac{1}{(a) \frac{dx}{dx}}$ (b) dz (c) $\frac{dx}{dy}$ (d) $\frac{dy}{dx}$
(8) $u = \frac{x + y}{x - y}$ is homogeneous function of degree $\frac{1}{(a) 3}$ (b) 1 (c) 2 (d) 0
(9) The differential equation $(x^2 + 2xy - y^2) dx - (x + y)^2 dy = 0$
(a) $\frac{z}{(a) y = x + 7}$ (b) $y = cx + 7c$ (c) $cx + 7c = 0$ (d) $y = cp + 7c$
(2.2 Write down answers of ANY TEN questions in short. [20]
(1) Find nth derivative of $y = e^{mx}$
(2) If $y = \cos(ax + b)$ then find y_n . [3)

(4) Find the radius of curvature of any point on the curve $r_1=a\theta$.

1

(5)	Determine the values of θ at points of intersection of $r = a(1+\cos\theta)$ and $r = -a \cos\theta$.	
(6)	Find $\frac{ds}{dx}$ for y = a cosh $\left(\frac{x}{a}\right)$	
(7)	Define: Homogeneous Function	
(8)	State Euler's theorem for function of three variables.	
(9) (10)	Define: Implicit Function Define: Orthogonal Trajectory	
(10)	Solve: sinpx cosy = cosp xsiny + p	
(12)	Define: Exact Differential Equation	
Q.3		[05]
(a) (b)	If y =y e ^{ax} sin (bx+c) then find y _n . Find angle between radius vector and tangent to the curve	[05] [05]
(0)	$r^{m} = a^{m} (\cos \theta + \sin \theta)$	[00]
$\cap 2$	OR	
Q.3 (a)	If $y = (x - \sqrt{4 + x^2})^m$, then find $y_n(0)$.	[05]
(b)	Obtain the angle between radius vector and tangent for the polar curve $r = f(\theta)$.	[05]
Q.4		
(a)	In usual notations prove that, $\rho = \frac{(1+y_1^2)^{\frac{3}{2}}}{y_2}$ Prove that the length of the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ meausured from (0,a)	[06]
(b)	Prove that the length of the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ meausured from (0,a)	[05]
	to the point (x,y) is $\frac{3}{2} (ax^2)^{\frac{1}{3}}$	
Q.4	OR	
(a)	For a cartesian curve y = f(x), prove that $\frac{ds}{dx} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$	[05]
(a)	For a cartesian curve $v = f(x)$, prove that $- = (1 + 1)$	
	Chow that the intrincip equation of the gun a_{1}^{3} a_{2}^{2} is $27a_{1}^{2}$ a_{2}^{2} a_{3}^{2} b_{4}^{2} a_{1}^{3}	
(b)	Show that the intrinsic equation of the curve $y^3 = ax^2$ is $27s = 8a(sec^3\psi - 1)$	
(b) Q.5	Show that the intrinsic equation of the curve $y^3 = ax^2$ is $27s = 8a(sec^3\psi - 1)$	[05]
(b) Q.5 (a)	Show that the intrinsic equation of the curve $y^3 = ax^2$ is $27s = 8a(sec^3\psi - 1)$ State and prove Euler's theorem for homogeneous function of two variables.	[05]
(b) Q.5	Show that the intrinsic equation of the curve $y^3 = ax^2$ is $27s = 8a(\sec^3\psi - 1)$ State and prove Euler's theorem for homogeneous function of two variables. If H = f(2x-3y, 3y-4z, 4z-2x), then prove that $\frac{1}{2} \frac{\partial H}{\partial x} + \frac{1}{3} \frac{\partial H}{\partial y} + \frac{1}{4} \frac{\partial H}{\partial z} = 0$	[05] [05]
(b) Q.5 (a) (b) Q.5	Show that the intrinsic equation of the curve $y^3 = ax^2$ is $27s = 8a(sec^3\psi - 1)$ State and prove Euler's theorem for homogeneous function of two variables.	[05]
(b) Q.5 (a) (b)	Show that the intrinsic equation of the curve $y^3 = ax^2$ is $27s = 8a(\sec^3\psi - 1)$ State and prove Euler's theorem for homogeneous function of two variables. If H = f(2x-3y, 3y-4z, 4z-2x), then prove that $\frac{1}{2} \frac{\partial H}{\partial x} + \frac{1}{3} \frac{\partial H}{\partial y} + \frac{1}{4} \frac{\partial H}{\partial z} = 0$ OR Verify Euler's theorem for $z = x^n log\left(\frac{y}{x}\right)$	
(b) Q.5 (a) (b) Q.5	Show that the intrinsic equation of the curve $y^3 = ax^2$ is $27s = 8a(\sec^3\psi - 1)$ State and prove Euler's theorem for homogeneous function of two variables. If H = f(2x-3y, 3y-4z, 4z-2x), then prove that $\frac{1}{2} \frac{\partial H}{\partial x} + \frac{1}{3} \frac{\partial H}{\partial y} + \frac{1}{4} \frac{\partial H}{\partial z} = 0$ OR Verify Euler's theorem for $z = x^n log\left(\frac{y}{x}\right)$ If A, B, C ar angles of a $\triangle ABC$ such that $\sin^2 A + \sin^2 B + \sin^2 c = K$, a	[05]
(b) Q.5 (a) (b) Q.5 (a)	Show that the intrinsic equation of the curve $y^3 = ax^2$ is $27s = 8a(\sec^3\psi - 1)$ State and prove Euler's theorem for homogeneous function of two variables. If H = f(2x-3y, 3y-4z, 4z-2x), then prove that $\frac{1}{2} \frac{\partial H}{\partial x} + \frac{1}{3} \frac{\partial H}{\partial y} + \frac{1}{4} \frac{\partial H}{\partial z} = 0$ OR Verify Euler's theorem for $z = x^n log\left(\frac{y}{x}\right)$	[05] [05]
(b) Q.5 (a) (b) Q.5 (a)	Show that the intrinsic equation of the curve $y^3 = ax^2$ is $27s = 8a(\sec^3\psi - 1)$ State and prove Euler's theorem for homogeneous function of two variables. If H = f(2x-3y, 3y-4z, 4z-2x), then prove that $\frac{1}{2} \frac{\partial H}{\partial x} + \frac{1}{3} \frac{\partial H}{\partial y} + \frac{1}{4} \frac{\partial H}{\partial z} = 0$ OR Verify Euler's theorem for $z = x^n log\left(\frac{y}{x}\right)$ If A, B, C ar angles of a $\triangle ABC$ such that $\sin^2 A + \sin^2 B + \sin^2 c = K$, a	[05] [05]
(b) Q.5 (a) (b) Q.5 (a) (b)	Show that the intrinsic equation of the curve $y^3 = ax^2$ is $27s = 8a(\sec^3\psi - 1)$ State and prove Euler's theorem for homogeneous function of two variables. If H = f(2x-3y, 3y-4z, 4z-2x), then prove that $\frac{1}{2} \frac{\partial H}{\partial x} + \frac{1}{3} \frac{\partial H}{\partial y} + \frac{1}{4} \frac{\partial H}{\partial z} = 0$ OR Verify Euler's theorem for $z = x^n log\left(\frac{y}{x}\right)$ If A, B, C ar angles of a \triangle ABC such that $\sin^2 A + \sin^2 B + \sin^2 c = K$, a constant then prove that $\frac{dB}{dc} = \frac{tnaC - tanA}{tanA - tanB}$	[05] [05] [05]
 (b) Q.5 (a) Q.5 (a) (b) Q.6 	Show that the intrinsic equation of the curve $y^3 = ax^2$ is $27s = 8a(\sec^3\psi - 1)$ State and prove Euler's theorem for homogeneous function of two variables. If H = f(2x-3y, 3y-4z, 4z-2x), then prove that $\frac{1}{2} \frac{\partial H}{\partial x} + \frac{1}{3} \frac{\partial H}{\partial y} + \frac{1}{4} \frac{\partial H}{\partial z} = 0$ OR Verify Euler's theorem for $z = x^n log\left(\frac{y}{x}\right)$ If A, B, C ar angles of a \triangle ABC such that $\sin^2 A + \sin^2 B + \sin^2 c = K$, a constant then prove that $\frac{dB}{dc} = \frac{tnac - tanA}{tanA - tanB}$ Prove that the necessary and sufficient condition for the differential equation Mdx+Ndy = 0 to be exact is that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ OR	[05] [05] [05] [10]
(b) Q.5 (a) (b) Q.5 (a) (b)	Show that the intrinsic equation of the curve $y^3 = ax^2$ is $27s = 8a(\sec^3\psi - 1)$ State and prove Euler's theorem for homogeneous function of two variables. If H = f(2x-3y, 3y-4z, 4z-2x), then prove that $\frac{1}{2} \frac{\partial H}{\partial x} + \frac{1}{3} \frac{\partial H}{\partial y} + \frac{1}{4} \frac{\partial H}{\partial z} = 0$ OR Verify Euler's theorem for $z = x^n log\left(\frac{y}{x}\right)$ If A, B, C ar angles of a $\triangle ABC$ such that $\sin^2 A + \sin^2 B + \sin^2 c = K$, a constant then prove that $\frac{dB}{dC} = \frac{tnaC - tanA}{tanA - tanB}$ Prove that the necessary and sufficient condition for the differential equation Mdx+Ndy = 0 to be exact is that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	[05] [05] [05]
 (b) Q.5 (a) Q.5 (a) (b) Q.6 	Show that the intrinsic equation of the curve $y^3 = ax^2$ is $27s = 8a(\sec^3\psi - 1)$ State and prove Euler's theorem for homogeneous function of two variables. If H = f(2x-3y, 3y-4z, 4z-2x), then prove that $\frac{1}{2} \frac{\partial H}{\partial x} + \frac{1}{3} \frac{\partial H}{\partial y} + \frac{1}{4} \frac{\partial H}{\partial z} = 0$ OR Verify Euler's theorem for $z = x^n log\left(\frac{y}{x}\right)$ If A, B, C ar angles of a \triangle ABC such that $\sin^2 A + \sin^2 B + \sin^2 c = K$, a constant then prove that $\frac{dB}{dc} = \frac{tnac - tanA}{tanA - tanB}$ Prove that the necessary and sufficient condition for the differential equation Mdx+Ndy = 0 to be exact is that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ OR	[05] [05] [05] [10]

##