SARDAR PATEL UNIVERSITY B.Sc.(I SEM.) (NC) EXAMINATION Thursday, $27^{\text {th }}$ December, 2012 10.30 am to 12.30 pm
 US01CMTH02 : MATHEMATICS
 Calculus and Differential Equation

Total Marks: 70
Note: Figures to the right indicate full marks of the questions.
Q. 1 Answer the following questions by selecting the most appropriate option. Write down the option in your answer book.
(1) If $y=e^{5 x}$ then $y_{n}=$
(a) $e^{5 x}$
(b) $5 e^{5 x}$
(c) $5^{n} e^{5 x}$
(d) $5^{n} e^{x}$
(2) If $y=\sin 7 x$ then $y_{n}=$
(a) $7^{n} \sin \left(7 x+\frac{\pi}{2}\right)$
(b) $7^{n} \sin \left(7 x+\frac{n \pi}{2}\right)$
(c) $7^{n} \cos \left(7 x+\frac{\pi}{2}\right)$
(d) $7^{n} \cos \left(7 x+\frac{n \pi}{2}\right)$
(3) For a polar curve $r=f(\boldsymbol{\theta}), \tan \varnothing=$ \qquad
(a) $\frac{r_{1}}{r_{2}}$
(b) $\frac{r_{2}}{r_{1}}$
(c) $\frac{r_{1}}{r}$
(d) $\frac{r}{r_{1}}$
(4) $\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}=$ \qquad
(a) $\frac{d s}{d \theta}$
(b) $\frac{d s}{d r}$
(c) ϱ
(d) $\frac{1}{\varrho}$
(5) For a polar curve, $\varrho=$ \qquad
(a) $\frac{\left(r^{2}+r_{1}^{2}\right)^{\frac{3}{2}}}{r^{2}+2 r_{1}^{2}-r r_{2}}$
(b) $\frac{\left(r^{2}+r_{2}^{2}\right)^{\frac{3}{2}}}{r^{2}+2 r_{1}^{2}-r r_{2}}$
(c) $\frac{\left(1+r_{1}^{2}\right)^{\frac{3}{2}}}{r_{2}}$
(d) $\frac{\left(1+r_{2}^{2}\right)^{\frac{3}{2}}}{r_{1}}$
(6) $\frac{\partial^{2} z}{\partial y \partial x}=$ \qquad
(a) $\frac{\partial z}{\partial y} \cdot \frac{\partial z}{\partial x}$
(b) $\frac{\partial^{2} z}{\partial y^{2}}$
(c) $\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)$
(d) $\frac{\partial^{2} z}{\partial x^{2}}$
(7) Let $z=f(x, y)$ be defined on E, then $\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d \boldsymbol{y}=$ \qquad
(a) $\frac{d z}{d x}$
(b) $d z$
(c) $\frac{d z}{d y}$
(d) $\frac{d y}{d x}$
(8) $\mathrm{u}=\frac{x+y}{x-y}$ is homogeneous function of degree \qquad
(a) 3
(b) 1
(c) 2
(d) 0
(9) The differential equation $\left(x^{2}+2 x y-y^{2}\right) d x-(x+y)^{2} d y=0$
is \qquad
(a) Exact
(b) Not Exact
(c) Clairaut's
(d) None of these
(10) The general solution of the differential equation $y=p x+7 p$ is
(a) $y=x+7$
(b) $y=c x+7 c$
(c) $c x+7 c=0$
(d) $y=c p+7 c$
Q. 2 Write down answers of ANY TEN questions in short.
(1) Find $n^{\text {th }}$ derivative of $y=e^{m x}$
(2) If $y=\cos (a x+b)$ then find y_{n}.
(3) For $y=a^{m x}$, find y_{n}.
(4) Find the radius of curvature of any point on the curve $r_{1}=a \boldsymbol{\theta}$.
(5) Determine the values of $\boldsymbol{\theta}$ at points of intersection of $r=a(1+\cos \boldsymbol{\theta})$ and $r=-a \cos \theta$.
(6) Find $\frac{d s}{d x}$ for $\mathrm{y}=\mathrm{a} \cosh \left(\frac{x}{a}\right)$
(7) Define: Homogeneous Function
(8) State Euler's theorem for function of three variables.
(9) Define: Implicit Function
(10) Define: Orthogonal Trajectory
(11) Solve: sinpx cosy = cosp xsiny + p
(12) Define: Exact Differential Equation
Q. 3
(a) If $y=y e^{a x} \sin (b x+c)$ then find y_{n}.
(b) Find angle between radius vector and tangent to the curve $r^{m}=a^{m}(\cos m \theta+\sin m \boldsymbol{\theta})$

OR

Q. 3
(a) If $y=\left(x-\sqrt{4+x^{2}}\right)^{m}$, then find $y_{n}(0)$.
(b) Obtain the angle between radius vector and tangent for the polar curve $r=f(\boldsymbol{\theta})$.
Q. 4
(a) In usual notations prove that, $\varrho=\frac{\left(1+y_{1}^{2}\right)^{\frac{3}{2}}}{y_{2}}$
(b) Prove that the length of the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ meausured from ($0, \mathrm{a}$) to the point (x, y) is $\frac{3}{2}\left(a x^{2}\right)^{\frac{1}{3}}$

OR

Q. 4
(a) For a cartesian curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$, prove that $\frac{d s}{d x}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$
(b) Show that the intrinsic equation of the curve $y^{3}=\mathrm{ax}^{2}$ is $27 \mathrm{~s}=8 \mathrm{a}\left(\sec ^{3} \boldsymbol{\psi}-\mathbf{1}\right)$
Q. 5
(a) State and prove Euler's theorem for homogeneous function of two variables.
(b) If $\mathrm{H}=\mathrm{f}(2 \mathrm{x}-3 \mathrm{y}, 3 \mathrm{y}-4 \mathrm{z}, 4 \mathrm{z}-2 \mathrm{x})$, then prove that $\frac{\mathbf{1}}{\mathbf{2}} \frac{\partial H}{\partial x}+\frac{\mathbf{1}}{\mathbf{3}} \frac{\partial H}{\partial y}+\frac{\mathbf{1}}{4} \frac{\partial H}{\partial z}=\mathbf{0}$

OR

Q. 5
(a) Verify Euler's theorem for $\mathrm{z}=\boldsymbol{x}^{\boldsymbol{n}} \boldsymbol{\operatorname { l o g }}\left(\frac{y}{x}\right)$
(b) If A, B, C ar angles of a $\triangle A B C$ such that $\sin ^{2} A+\sin ^{2} B+\sin ^{2} c=K$, a constant then prove that $\frac{d B}{\boldsymbol{d} C}=\frac{\tan C-\boldsymbol{t a n} A}{\tan A-\tan B}$
Q. 6 Prove that the necessary and sufficient condition for the differential equation $M d x+N d y=0$ to be exact is that $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$

OR

Q. 6 Solve: $(p+y+x)(x p+x+y)(p+2 x)=0$

