SARDAR PATEL UNIVERSITY B Sc (I Semester) Examination Wednesday, 5th December 2012 2.30 – 4.30 pm US01CICV02 : Industrial Chemistry Vocational (Process Calculations)

Total Marks: 70

Q. 1	Select and write the correct option among the given options for each of the following questions. (1					
(1)						
	respective components					
	(a) Roult's Law	(b) Dalton's Law (d) Henry's Law				
	(c) Amagat's Law	(d) Henry's Law				
(2)			ies to measure specific			
	gravity of aqueous solut	tion.				
	(a) Degree Baume	(b) Degree Brix	(c) Degree API			
(3)	Absolute pressure of gaseous mixture is equal to					
	(a) gage pressure + atmospheric pressure					
	. ,	ndard atmospheric press	sure			
	(c) gage pressure + barometric pressure					
	(d) None of above					
(4)	Which of the following is					
<i>(</i> - <i>)</i>			eration (d) Nitration			
(5)		$H_2 = CH_3OH$, which is th				
(0)	(a) Methane	(b) Hydrogen	(c) None			
(6)	Recycle ratio is	<u>_</u>				
	(a) $\frac{R}{F}$	(b) -	(c) F x R			
	•	1 \	. ,			
(7)	Energy associated with	mass of the system is _	energy.			
	(a) Potential (b)	Kinetic (c) Internal	(d) All the above			
(8)	Heat of reaction gets af	fected by changing (b) pressure only				
	(a) temperature only	(b) pressure only	(c) both (a) & (b)			
(9)	Combustion is	reaction.				
		(b) reduction	(c) polymetization			
(10)	Humidity of air is define					
	(a) kg water vapor per k	•				
	(b) K _{mole} water vapor per K _{mole} dry air					
	(c) K _{mole} water vapor pe	r kg dry air				
0.3	Anayyar tha fallowing (1	\mu Tam\		(20)		
Q. 2 (1)	Answer the following: (Any Ten)					
` ,	' '					
(2) (3)	Define: Pure component volume, Boiling Point.					
(3) (4)	State and explain Roult's law. List industrially practiced common unit operations and unit processes.					
(4) (5)	Explain batch and continuous processes with examples.					
(6)	Explain batter and continuous processes with examples. Explain limiting and excess reactants with examples.					
(7)	, , ,					
(')		org, and arm or oriorgy in	i wii to ana or anito.			

(8) (9) (10)	Write: Complete energy balance equation. Define: Combustion, Calorific Value. Explain: Dew point temperature and Wet bulb temperature.			
Q. 3	(a)	Prove that for gaseous mixture, the mole percentage composition is equal to volume percentage composition.	(06)	
	(b)	Explain average molecular weight and density of gaseous mixture. OR	(04)	
Q. 3	(a) (b)	Discuss the phenomenon of Vapor pressure of the liquids. A natural gas has the following compositions by volume. $CH_4-82\%, C_2H_6-12\%, N_2-6\%$ Calculate the density of gas at 288 K and 101.32 KPa and composition in weight percent.	(04 <u>)</u> (06 <u>)</u>	
Q. 4	(a)	Explain the concept of material balance and material balance calculations. List the steps followed in material balance calculation.	(04)	
	(b)	The dilute acid containing 25% H ₂ SO ₄ is concentrated by commercial grade Sulfuric acid containing 98% H ₂ SO ₄ to obtain desired acid containing 65% H ₂ SO ₄ . Find the quantities of the acids required to make 1000 kg of desired acid. OR	(06)	
Q. 4	(a) (b)	Write short note on: Recycle Operation Explain: (1) Material Balance Problems (2) Process and Process Variables	(06) (04)	
Q. 5		e statement of law of conservation of energy. Derive the equation = Q – W assuming usual notations. OR	(10)	
Q. 5	Exp	Explain effect of temperature on heat of reaction.		
Q. 6	(a) (b)	Give classification of fuels. Discuss combustion reactions for burning of fuels. OR	(04) (06)	
Q. 6	Writ (a) (b)	e short note on: Calorific Value Units to express composition of vapor bearing gaseous mixture	(06) (04)	

