

[74]

No. of printed pages: 3

SARDAR PATEL UNIVERSITY B.Sc. (I Semester) Examination 12th April 2016 (Tuesday) 2.30 pm - 4.30 pm MATHEMATICS

US01CMTH02 - Calculus and Differential equations

Total Marks: 70

Q.1	Answer the following by selecting the correct answer from the given options.	(10)
	(1) If we lead out the given options.	(10)

(1) If y= log(ax+b) then
$$y_n = \frac{(-1)^n n! \, a^n}{(ax+b)^{n+1}}$$
 (b) $\frac{(-1)^{n-1} (n-1)! \, a^n}{(ax+b)^n}$ (c) $\frac{(-1)^n n! \, a^n}{(ax+b)^n}$ (d) $\frac{(-1)^{n-1} n! \, a^n}{(ax+b)^n}$

(2) If y= cos3x then
$$y_n = \frac{1}{2}$$
 (a) $3^n \cos(3x + \frac{\pi}{2})$ (b) $3^n \cos(3x + \frac{n\pi}{2})$ (c) $3^n \sin(3x + \frac{n\pi}{2})$ (d) $3^n \sin(3x + \frac{\pi}{2})$

(3) If
$$y = (x^2 - 2)^m$$
 then $(x^2 - 2)y_1 =$ _____

(a) mxy (b) 2my (c) 2mx (d) 2mxy

For
$$r = f(\theta)$$
 which of the following is not to 2

(4) For
$$r=f(\theta)$$
 which of the following is not true?

(a)
$$\frac{ds}{d\theta} = \sqrt{1 + (\frac{dr}{d\theta})^2}$$
 (b) $tan\emptyset = \frac{r}{r_1}$ (c) $\rho = \frac{(r^2 + r_1^2)^{\frac{3}{2}}}{r^2 + 2r_1^2 - rr_2}$ (d) $\frac{ds}{d\theta} = \sqrt{r^2 + (\frac{dr}{d\theta})^2}$

(5) let x=x(t) and y=y(t) be the parametric equation of the curve then
$$\frac{ds}{dt} = \frac{1}{(a)} \sqrt{1 + (\frac{dx}{dt})^2}$$
 (b) $\sqrt{1 + (\frac{dy}{dt})^2}$ (c) $\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2}$ (d) $\sqrt{1 + (\frac{dy}{dx})^2}$

(6) Curvature of the line
$$2x + 3y = 1$$
 is _____ (a) 1 (b) 0 (c) $\frac{-2}{3}$ (d) $\frac{3}{2}$

(9) Order and degree of
$$x^2y_2^3 + yy_1^5 + xy = 0$$
 are ______respectively (a) 3 & 2 (b) 1 & 5 (c) 2 & 3 (d) 3 & 5

(a)
$$p$$
 (b) $-p$ (c) $constant$ (d) 0

Q.2 Answer ANY TEN of the following.

(20)

- (1) If $y=\sin(ax+b)$ then find y_n .
- (2) If y=xsinx then find y_n .
- (3) Find \emptyset for the curve $r=a(1+\theta)$.
- (4) Find $\frac{ds}{dx}$ for $y = a \sin 2x$.
- (5) Define: (1) Average curvature (2) intrinsic equation.
- (6) Find the length of the curve y = 3x 9 measured from (0,-9) to (3,0).
- (7) Let u=u(x, y) be a non-homogeneous function and $z=\emptyset(u)$ homogeneous then Prove that $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=n\frac{\emptyset(u)}{\emptyset'(u)}$.
- (8) For $u = x^3 3xy^2$ find $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$.
- (9) Verify Euler's theorem for $z = x^2y xy^2$
- (10) Find the solution of the differential equation $px = y p^2$.
- (11) Find the orthogonal trajectories of family of curve y = cx where c is the Parameter.
- (12) Determine whether $x^3y dx xy^3 dy = 0$ is exact or not.

Q.3

(a) State and prove Leibniz's theorem. (05)

(b) For $y = e^{ax} \sin(bx + c)$, then prove that $y_n = r^n e^{ax} \sin(bx + c + n\emptyset)$ (05) Where $r = \sqrt{a^2 + b^2}$, $\emptyset = tan^{-1}(\frac{b}{a})$

OR

Q.3

(a) Find
$$y_n$$
 for $y = e^{2x} cosx sin^2 2x$. (05)

(b) If $x = cos(\frac{1}{m}logy)$ then find $y_n(0)$. (05)

Q.4

- (a) Fix a point A(x₀,y₀) on a curve given by y=f(x). For a point P(x,f(x)) on the curve ,let s be the arc length of arc AP. Then prove that $\frac{ds}{dx} = \sqrt{1 + (\frac{dy}{dx})^2}$
- (b) Show that the entire length of the curve $x^2(a^2 x^2) = 8a^2y^2$ is $\pi a\sqrt{2}$. (05)

OR

- Q.4
- (a) Let y=f(x) be a curve and P be a point then prove that the radius of curvature at P is given by $\rho = \frac{(1+y_1^2)^{\frac{3}{2}}}{y_2} \text{ where } y_1 = \frac{dy}{dx} \& y_2 = \frac{d^2y}{dx^2}$
- (b) Find the intrinsic equation of the Cardioid $= a(1 + cos\theta)$. Hence prove that $s^2 + 9\rho^2 = 16a^2$. Where ρ is radius of curvature at any point of the curve. (05)
- Q.5
- (a) State and prove Euler's theorem for homogeneous function of two variables. (05)
- (b) If $z = xyf(\frac{y}{x})$ and z is constant then prove that $\frac{f'(\frac{y}{x})}{f(\frac{y}{x})} = \frac{x[y + x\frac{dy}{dx}]}{y[y x\frac{dy}{dx}]}$. (05)

OR

- Q.5
- (a) If z = f(x, y), $x = rcos\theta$, $y = rsin\theta$, then prove that $(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2 = (\frac{\partial z}{\partial r})^2 + \frac{1}{r^2} (\frac{\partial z}{\partial \theta})^2$
- (b) If A,B and C are angles of a $\triangle ABC$ such that $sin^2A + sin^2B + sin^2C = K$, a constant, then prove that $\frac{dB}{dC} = \frac{\tan C \tan B}{\tan A \tan B}$.
- Q.6 Prove that the necessary and sufficient condition for the differential equation (10) Mdx+Ndy=0 to be exact is that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

Q.6 Solve (p + y + x)(xp + x + y)(p + 2x) = 0. (10)