[87]

No. of printed pages: 3

SARDAR PATEL UNIVERSITY **B.Sc.** (I Semester) Examination 2016 11th April 2016 (Monday) 2.30 pm - 4.30 pm

	US01CMTH01 – Mathematics / Analytic Geometry and Complex Numbers Total Marks: 70	
Q.1	Answer the following by selecting the correct answer from the given	(10)
	options.	(10)
	1) Asymptote of $y = x^3 - 3x^2 + 2x$ are	
	(a) $x = 0,1,2$; $y=1$ (b) $x=0,-1,2$; $y=0$ (c) $x = 0,1,-2$ (d) Not possible	
	2) If $(\frac{dy}{dx})_p = 0$ then the tangent at point p is parallel to the	
	(a) y-axis (b) x-axis (c) Line $x = 5$ (d) None of these	
	The shape of Lemniscates looks like	
	(a) 8 (b) Flower (c) Rose (d) Heart Shape	
	4) The curve of r= $5\sin 7\theta$ has loops.	
	(a) 5 (b) 7 (c) 14 (d) 12	
	5) The curve $r = a\theta$ is symmetric about	
	(a) Polar axis (b) Normal axis (c) pole (d) None of these	
	6) Polar equation of vertical line through the point (3, 180°) is	
	(a) $3 = r\cos\theta$ (b) $3 = r\sin\theta$ (c) $3 = -r\sin\theta$ (d) $3 = -r\cos\theta$	
	7) The equation of curve $3=r(\cos\theta - 2\sin\theta)$ represent	
	(a) Circle (b) Line (c) Hyperbola (d) Parabola	
	8) If eccentricity e >1 then conic is (a) Hyperbola (b) Parabola (c) Circle (d) ellipse	
	(a) Hyperbola (b) Farabola (c) Circle (d) ellipse	
	9) The imaginary part of z= (1+2i)(1-3i) is	
	(a) 1 (b) -1 (c) 7 (d) -7	
	10) $(cis\theta)^{3/7}$ has only distinct values.	
	(a) 3 (b) 7 (c) $\frac{3}{7}$ (d) $\frac{1}{7}$	
	7	
Q.2	Answer ANY TEN of the following.	20)
	1) Discuss symmetries of the curve $xy - 16 = 0$.	
	2) Find the parametric equation of $x^{2/3}+y^{2/3}=a^{2/3}$.	
	3) Find the tangent parallel to axes for $x = cos^2\theta$; $y = 2sin\theta$.	
	4) Identify the curve 3/1, cos 4)	

- 4) Identify the curve 3(1- $\cos \theta$).
- 5) Transfer the equation r=tan θ +sec θ in to Cartesian form.
- 6) Express the point $(\sqrt{3}, 1)$ in polar form.

- 7) Find radius and center of the circle r= $3\sin\theta$.
- 8) Find the equation of the horizontal line through the point (-2, 90°).
- 9) Find the polar equation of circle with center at (4, 90°) and passes through pole.
- 10) Find modulus of $z = \frac{(3-\sqrt{2i})^2}{1+2i}$
- 11) Find amplitude of $z = -\sqrt{3} + i$.
- 12) Find $z + \frac{1}{z}$ for z = 4 + 5i.

Q.3

a) If a curve given by x = f(t), y = g(t) and both x and y get numerically large as t approaches some number say "a". Then an oblique asymptote to the curve if it exit is given by y=mx+c;

Where, $m=\lim_{t\to a} \left(\frac{dy}{dx}\right)$ and $c=\lim_{t\to a} (y-mx)$.

b) Sketch the curve given by $y = \frac{x(x-4)}{(x-1)(x+2)}$ (05)

OR

Q.3

- a) Obtain parametric equations of cycloid. (05)
- b) Find the equations of tangent and normal line to a curve $y^2 = 4ax$ at point (at², 2at).

Q.4

- a) State when the polar curve is symmetric with respect to polar axis? Also prove it. (05)
- b) Discuss symmetry, extent, closeness of the curve $r^2=9\sin 2\theta$ and hence sketch the curve. (05)

OR

Q.4

- a) State when the polar curve is symmetric with respect to normal axis? Also prove it. (05)
- b) Sketch the curve given by $r=3(1+\cos\theta)$ (05)

Q.5

a) In usual notations prove that $r = \frac{pe}{1 + e \cos \theta}$ (05)

(05)

b) If any straight line through the pole meets the circle r^2 - $2rdcos(\theta - \alpha)+d^2-a^2=0$ at point P and Q. Then prove that OP.OQ= d^2-a^2 .

OR

Q.5

- a) Prove that equation of line not passing through the pole is p= $rcos(\theta \omega)$, where (p, ω) is the foot of perpendicular from the pole. (05)
- b) Identify curve $r=1+\cos\theta$. Also find its reciprocal curve. Sketch (05) both of the curves with the same frame of reference.

Q.6

State and prove De-Moiver's Theorem. (10)

OR

2.6

Expand $\cos^8 \theta$ in a series of cosines of multiples of θ . (10)

X=X=X