SEAT No.____

No. of Printed Pages: 3

SARDAR PATEL UNIVERSITY

BSc Examination [Semester: V]

Subject: Physics Course: US05CPHY02

Mathematical Physics

Wednesday, Date 24-10-2018

Time: 10.00 am to 1.00 pm

Total Marks: 70

INSTRUCTIONS:

- Attempt all questions.
- The symbols have their usual meaning. 2
- 3 Figures to the right indicate full marks.

Q-1 Multiple Choice Questions: [Attempt ail]

10

- (i) The orthogonality condition for curvilinear co-ordinates is _____.
 - (a)

 $\frac{\partial r}{\partial u} \cdot \frac{\partial r}{\partial u} = 0$ $\frac{\partial u}{\partial r} \cdot \frac{\partial v}{\partial r} = 0$ (c)

- A square matrix A is called singular matrix if |A| =(ii)
 - (a)

(b)

(c) ∞

- (d) -1
- For a matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 2 & 4 & 6 \end{bmatrix}$, |A| =_____. (iii)
 - (a)

(b)

(c) 0

- (d) -1
- (iv) For Bessel's equation, ___
 - k = 1 or k = -1(a)

- (b) k = n or k = -n
- k = n or k = n 1(c)
- (d) k = n or k = -n - 1
- (v) The generating function for Hermite polynomial is
 - e^{x} (a)

 e^{2tx-t^2}

 $\rho^{\frac{\chi}{2}(t-1)}$ (c)

- e^{2x-t^2} (d)
- $\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + 2vy = 0 \text{ is called}$ (Here v is a parameter)
 - (a) Hermite differential equation
- (b). Legendre's differential equation
- Bessel's differential equation
- (d) First order differential equation
- The coefficients a_0 for Fourier series of a periodic function f(x) in $[-\pi, \pi] =$ (vii)
 - $\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx \,dx$
- $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx$ (b)

 $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \ dx$ (c)

 $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \ dx$ (d)

viii)	The amount of heat ΔH crossing an element of surface ΔS in time Δt is given by							
	(a)	$\Delta H = K \Delta S \left \frac{du}{dt} \right $ (b) $\Delta H = K \Delta S \Delta t \left \frac{du}{dt} \right $ (d) $\Delta H = K \frac{\Delta S}{\Delta t} \left \frac{du}{dt} \right $						
	(c)	$\Delta H = K \Delta t \left \frac{du}{dt} \right \qquad (d) \qquad \Delta H = K \left \frac{\Delta S}{\Delta t} \left \frac{du}{dt} \right $						
ix)	"The best representative curve to the given set of observations is one for which E , sum of the squares of the residuals, is minimum". This concept is known as							
	(a) (c)	Principle of least squares (b) Principle of differentiation Principle of integration (d) None of these						
(x)	The backward difference operator ∇ defined as							
	(a) (c)	$\nabla y_i = y_{i-1} - y_i $ (b) $\nabla y_i = y_i - y_{i-1}$ $\nabla y_i = y_{i+1} - y_i $ (d) $\nabla y_i = y_i - y_{i+1}$						
Q-2	An	swer the following questions in short. (Attempt any ten)	20					
(1)	Define (i) symmetric matrix and (ii) inverse of a matrix							
(2)	Determine eigen values for matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$. (Use relation: $ A - \lambda I = 0$)							
(3)	Define curvilinear co-ordinates.							
(4)	Write Bessel's differential equation.							
(5)	For Bessel's function, prove that: $x J'_n(x) = n J_n(x) - x J_{n+1}(x)$.							
(6)	Show that $P_n(-\mu) = (-1)^n P_n(\mu)$.							
(7)	Define Fourier series.							
(8)	Write the Fourier equation of heat flow.							
(9)	Write cosine series for $f(x)$ when $0 \le x \le \pi$. (Note: derivation is not required)							
(10)	Define (i) interpolation and (ii) extrapolation.							
(11)	For a shift operator E, show that $\Delta = E - 1$.							
(12)	Derive an equivalent equation of a straight line for $y = ae^{bx}$.							
Q-3	(a)	Derive expression of gradient in terms of orthogonal curvilinear system.	6					
	(b) If $u = 3x + 2$, $v = y - 1$, $w = 5z + 3$, show that u, v and w are orthogonal and find							
	ds^2 and the metrical coefficients: h_1 , h_2 , h_3 .							
		OR						
Q-3	(a)	(a) Discuss spherical polar co-ordinates as a special curvilinear system.						
	(b) Discuss orthogonal curvilinear coordinates and show that $\left[\frac{\partial \vec{r}}{\partial u} \frac{\partial \vec{r}}{\partial v} \frac{\partial \vec{r}}{\partial w}\right] = h_1 h_2 h_3$							

Q-4 (a) State and derive the Rodrigue's formula.

6

(b) Show that for Bessle's function:

4

$$e^{\left(\frac{x}{2}\right)\left(t-\frac{1}{t}\right)} = \sum_{n=-\infty}^{\infty} t^n J_n(x)$$

OR

- **Q-4** (a) Derive the series solution of Legendre differential equation in the form of 6 descending power of x.
 - (b) For Hermite polynomial using equation $H_n(x) = e^{x^2} (-1)^n \frac{d^n}{dx^n} (e^{-x^2})$, calculate 4 Hermite polynomials $H_0(x)$, $H_1(x)$.
- Q-5 (a) Derive the Fourier series for a complex periodic function f(t) defined in $(-\infty, \infty)$. 6 Also find the coefficients α_n and β_n .
 - (b) Write a note on application of Fourier series involving phase angles.

OR

- **Q-5** (a) Obtain Fourier series for $f(x) = x \cdot \sin x$ in the interval $-\pi < x < \pi$, show that 6 $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1\cdot 3} \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} \cdots$
 - (b) Derive one dimensional diffusion equation for one dimensional flow of electricity in 4 a long insulated cable.
- Q-6 Derive Newton's forward difference interpolation formula and evaluate f(12) using the values given in the following table of values.

x	10	20	30	40	50	
y = f(x)	46	66	81	93	101	

OR

Using trapezoidal rule and Simpson's 1/3 rule compute the approximate value of $I = \int_0^\pi \sin x \ dx$ by dividing the range of integration into ten equal parts so that each part is of width $\frac{\pi}{10}$. What is the analytical value of $I = \int_0^\pi \sin x \ dx$. Which method gives more accurate result?

.