No. of Printed Pages : 2

SARDAR PATEL UNIVERSITY

B.Sc. SEM-5 EXAMINATON 2018

SUBJE	CT: MECHANICS-I
	10:00AM-1:00PM

SUBJECT CODE: US05CMTH06 DATE: 03/11/2018 (SATURDAY)

	M 100.1-MADO;			TAL MARKS: 70	(10)
.1 <u>C</u> I	HOOSE THE ANSWER AP	PROPRIATE FROM THE	FOLLOWING:		(10)
. M	agnitude of gradient vector	is•	(C) $\frac{da}{dn}$	(D) None	
	(A) $\frac{dv}{dn}$ ny vector has a unique direction	(B) $\frac{dF}{dn}$			
А	(A) Bound vector	(B) Sliding vector	(C) Unit vector	(D) None	
	mile,	(B) 16 meter	(C) 1.6 decimeter	(D) None	
4. ii	f F is the force acting on a p	article, the necessary and	sufficient condition for equi	(D) None	
		(D) E<()	(C) F-0	(**)	
5. L	et F(X, Y, Z) be force actir is given by (A) Xy+Yx	g at P(x, y, z) then its mo	oment along line perpendicular	(D) None	
6.	$V(A) = $ (A) $W(A_0, A)$ The rate of working is called	(B) $W(A_0, A_0)$	(C) $W(A) + W(A_0)$	(D) None	
7. '	The rate of working is called (A) power	(B) couple	(C) arm of couple	(D) None	
8.	1 horse power = (A) $5.50 \text{ filb sec}^{-1}$	(B) 550 filb sec ⁻¹	(C) 55.5 filb sec ⁻¹	(D) None	
9.	The differential equation of	(B) Ellipse	(C) Parabola	(D) None	
10. Q.2	In common catenary the w (A) equal ATTEMPT ANY TEN:	eight per unit length of th (B) unequal	e chain is (C) symmetrical	(D) None	(20
1.	Define: (1) Free vector, (2) Rigid body.			
2.	City Mountain laws of p	notion.			
3.	If $V = 2x^2y$, then find con	mponent of grad V at po	int $(2,0)$ in the direction mal	king angle 45 with Y-	
4.	axis. If O is orthocenter of $\triangle AB$	C , forces \overline{P} , \overline{Q} , \overline{R} acting a	along \overline{OA} , \overline{OB} , \overline{OC} respectively	y are in equilibrium, the	n Th
	show that $D \cdot O \cdot R = a \cdot b \cdot a$	*.	S#		
5.	Define: (1) Internal force	gle of forces.			
6.	State the theorem of trial	e, (2) Moment of couple.			
7. 8.	In usual notations show t	$hat \delta W = X \delta x + Y \delta y + Z \delta z$	are point file more out sufficient		
9.	Define: (1) Linear mome	ent, (2) Mass center.			
10.	In usual notations prove	that $s^2 = y^2 + 2cy$.			
11.	In usual notations prove	that $c^2 + s^2 = y^2$.			
12	Define: (1) Catenary, (2) Common catenary.			

Q.3

- State and prove equations of motion of a particle moving in a straight line. (A) (05)
- The resultant force of \overline{P} and \overline{Q} is \overline{R} ; if \overline{R} is doubled then \overline{Q} is doubled and if \overline{Q} is reversed then \overline{R} is (B) again double. Show that $P:Q:R=\sqrt{2}:\sqrt{3}:\sqrt{2}$ (05)

- Show that $v = \frac{u}{1 + Kux}$, using Kv^3 as the retardation, where K is a constant, u is initial velocity and v is (05)
- Show that $KS = \frac{1}{m-1} \left\{ \frac{1}{v^{m-1}} \frac{1}{u^{m-1}} \right\}$, using Kv^{m+1} as the retardation, where K is a constant, u is initial (D) (05)velocity and v is velocity.

Q.4

- State and prove Lamy's theorem. (A) (B)
- A body of mass 140 lbwt is suspended by two strings of length 5 ft. and 12 ft. and there ends by a rod of (05)length 13ft. Find tension in the strings. (05)OR.
- State and prove theorem of Varignon. (C) (D)
- Forces P, Q, & R acting at a point are in equilibrium and the angle between P & Q is double of that of P (05)(05)

Q.5

- Prove that Mass center of the system exist and it's unique. (A)
- State and prove principal of virtual work. (B) (05)(05)OR

- In usual notations prove that $\delta W = X \delta a + Y \delta b + N \delta \theta$. (C) (D)
- Find the mass center of the area in the first quadrant bounded by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (05)(05)

Q.6

- Obtain general equation of common catenary in the form of $y = c \left[\cos h(\frac{z}{c}) 1 \right]$ and show that (A) (05)
- Derive the differential equation of suspension bridge. Also, show that it represent the equation of (B) (05)

- For a cable in contact with smooth curve, in usual notations show that $N = \frac{T}{R}$, where N is normal (C)(05)reaction, \mathbb{N} is tension and ho is the radius of curvature for cable in contact with smooth curve.
- (D) A uniform chain A, B of length I hangs in the same horizontal line so that the tension is n-times that at the lowest point. Show that the *span AB* must be $\frac{1}{\sqrt{n^2-1}} \log[n+\sqrt{n^2-1}]$. (05)

