[39/A-8]

No of printed pages: 3

## SARDAR PATEL UNIVERSITY B.Sc. (SEMESTER - V) EXAMINATION Thursday, 1st November, 2018 MATHEMATICS: US05CMTH05

(Number Theory)

| $\Gamma ime: 10:00 \ a.m. \ to \ 01:00 \ p.m$ | $\Gamma$ ime | : | 10:00 | a.m. | to | 01:00 | p.m |
|-----------------------------------------------|--------------|---|-------|------|----|-------|-----|
|-----------------------------------------------|--------------|---|-------|------|----|-------|-----|

Maximum Marks: 70

Prove that the successive l'Illianora nucliers ar

(a) If ca = ib(mod n) and (can) = 1 then pr(b)

Que.1 Fill in the blanks.

10

 $(1) (a, 1) = \dots, \forall a \in \mathbb{Z}$ 

$$(1) (a, 1) = \dots, \forall a \in \mathbb{Z}$$

(a) 
$$-a$$
 (b)  $|a|$  (c) a (d)

(2) 
$$(a, b)[a, b] = \dots \forall a, b \in \mathbb{Z}$$
.

$$(3) [25, 30] = \dots$$

## (4) $P(60) = \dots$

(a) 
$$120$$
 (b)  $60$  (c)  $60^6$  (d)  $60^5$ 

(5) ..... is a Mersenne number of the prove that we will be used a Mersenne number of the state of the state

(6) 
$$\mu$$
(6) = .....

(a) 
$$1 = (b) = 0 + (c) + 1 + (d) = 2$$

(7) Prove that every number containing more than three digits can be divided by 8 iff the number formed by ...... digits can be divided by 8. To memoral lamentaling around him and (b)

Que 3 (c) Let g be a positive innegar greater than prove that every positive integer a can

- (a) last two (b) last three (d) first three first two
- (8) 765432 is not divisible by .....

(9) If  $a^d \equiv 1 \pmod{m}$  and n is order of a modulo m then ......

(a) 
$$n < d$$
 (b)  $d/n$  (c)  $d = n$  (d)  $n/d$ 

(10)  $2x + 4y \equiv 5 \pmod{12}$  has only ...... solutions.

(a) 1 (b) 
$$24$$
 (c)  $12$  (d)  $6$  5 miles formed that every result is  $6$  (d, a) If (a)  $6$  eV.

Que.2 Answer the following (Any Ten)

20

- (1) Prove that if (a, b) = d then  $\exists x, y \in \mathbb{Z}$  such that xa + yb = d.
- (2) Prove that (a, b) = (b, a + kb), for  $k \in \mathbb{Z}$ .
- (3) Prove that common multiple of a and b is a multiple of their lcm.
- (4) Let x be any positive real number and n be any positive integer then prove that among the integers from 1 to x the number of multipliers of n is  $\left[\frac{x}{n}\right]$ .
- (5) Prove that the successive Fibonacci numbers are relatively prime.
- (6) Prove that  $u_{n+1}^2 = u_n^2 + 3u_{n-1}^2 + 2[u_{n-2}^2 + u_{n-3}^2 + \dots + u_1]$ .
- (7) If  $a_1 \equiv b_1 \pmod{n}$  then prove that  $a_1^m \equiv b_1^m \pmod{n}$ ,  $\forall m \in \mathbb{N}$ .
- (8) If  $ca \equiv cb \pmod{n}$  and (c,n) = 1 then prove that  $a \equiv b \pmod{n}$ .
- (9) Prove that Pythagoras equation has no prime solution .
- (10) Solve the equation  $12x + 15 \equiv 0 \pmod{45}$ .
- (11) Find  $\phi(243) + \phi(81) + \phi(27) + \phi(9) + \phi(3)$ .
- (12) If (a,p)=1, p is prime, then prove that  $a^{p-1}\equiv 1 \pmod{p}$ .
- Que.3 (a) If  $P_n$  is  $n^{th}$  prime number then prove that  $P_n < 2^{2^n}$ ,  $\forall n \in \mathbb{N}$ .
  - (b) State and prove unique factorization theorem for positive integers.

## OR

- Que.3 (c) Let g be a positive integer greater than 1 then prove that every positive integer a can can be written uniquely in the form  $a=c_ng^n+c_{n-1}g^{n-1}+\ldots\ldots+c_1g+c_0$ , where  $n\geq 0$ ,  $c_i\in\mathbb{Z}$ ,  $0\leq c_i< g$ ,  $c_n\neq 0$ .
  - (d) State and prove Fundamental theorem of divisibility . It and an action and bondered a
- Que.4 (a) In usual notation prove that  $P(n!) = \sum_{k=1}^{m} \left[ \frac{n}{p^k} \right]$ , where  $p^m \le n < p^{m+1}$ . Hence find 2(50!), 4(50!) and 8(50!).
  - (b) Prove that g.c.d of two Fibonacci numbers is also a Fibonacci number.

## ${}^{t}OR^{t} = 1(mod \, m)$ and n is order of a model of (0, 1)

- Que.4 (c) Prove that every prime factor of  $F_n$  (n > 2) is of the form  $2^{n+2}t + 1$ , for some integer t.
  - (d) Prove that  $S(a) < a\sqrt{a}$  ,  $\forall \ a > 2$  . The second of the second
- Que.5 (a) If (a,b)=d, then prove that general solution of ax+by=c can be written as  $x=x_0+\frac{b}{d}$  t;  $y=y_0-\frac{a}{d}$  t, where  $t\in\mathbb{Z}$  and  $x=x_0$ ,  $y=y_0$  is a particular solution of ax+by=c.
  - (b) Find general solution of equation 50x + 45y + 36z = 10.

(c) Find positive integer solution of equation  $y - \frac{x+3y}{x+2} = 1$ .

Que.5 (d) Prove that  $x^4 + y^4 = z^2$  has no nonzero positive integer solution. Hence prove that  $x^{-4} + y^{-4} = z^{-4}$  has no nonzero positive integer solution.

(e) Prove that a general integer solution of  $x^2+y^2+z^2=w^2$ , (x,y,z,w)=1 is given by  $x=(a^2-b^2+c^2-d^2)$ , y=2ab-2cd, z=2ad+2bc,  $w=a^2+b^2+c^2+d^2$ .

5

Que.6 (a) State and prove Sun-Tsu theorem . Hence solve the system  $x\equiv -2 (mod~12)~~;~~x\equiv 6 (mod~10)~~;~~x\equiv 1 (mod~15)$  .

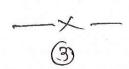
(b) In usual notation prove that  $\sum_{i=0}^{k} \Phi(p^{i}) = p^{k}$ , where p is prime .

OR

- Que.6 (c) Prove that  $ax + b \equiv 0 \pmod{m}$ , where (a, m) = d, d > 1 has solution iff d/b.

  Also prove that it has d solutions  $x_i \equiv a + i \frac{m}{d} \pmod{m}$ ,  $i = 0, 1, 2, \dots, d-1$ ,

  of which  $x \equiv a \pmod{\frac{m}{d}}$  is unique solution of  $\frac{a}{d}x + \frac{b}{d} \equiv 0 \pmod{\frac{m}{d}}$ .
  - (d) Prove that Euler's function is multiplicative function .



- (c) Find positive into an adultion of equation  $y = \frac{x+1/y}{x+2} = 1$
- Upon 1 (d) Prove that  $x^3 + y^4 = z^2$  has no nonzero posity a rate of stion. Hence prove that  $e^{-x} + y^3 = z^{-2}$  has no maxera positive integers, artison.
  - (c) From that a second integer solution of  $x^2+y^2+z^2=w^2$ , (e.g. x,w)=1 is given by  $x=(a^2-b^2+c^2-b^2)$ , y=2ab-3d, z=2ad+2b,  $w=c^{-1}b^2+c^2+d^2$ .
    - Que.C. (a) State and prove San Tan theorem . Hence solve the symmatric = -2(m+12) :  $x \equiv 0 \pmod{10}$
    - (ii) In axial notation prove that  $\sum \Phi(\rho) = \rho^{k}$  , where  $\rho$  is prime.

110

One if (i) Prive that  $ax+b\equiv 0$  (is or in), where ax+d=d>1 has solution iff axb

of which 
$$x \equiv a \left( mod \frac{m}{d} \right)$$
 is unitary solution of  $\frac{a}{a} = 0 \pmod{\frac{m}{a}}$ .

(d) Prove that Euler's fair that is a which which the