[66/A71]

SEAT No.

No. of Printed Pages: 2

SARDAR PATEL UNIVERSITY

B.Sc.(SEMESTER-V)EXAMINATION-2018

October 26, 2018, Friday 10.00 a.m. to 1.00 p.m.

US05CMTH03(MATHEMATICS)(Metric Spaces)

Maximum Marks: 70

Q.1 Choose the correct option in the following questions, mention the correct option in the answerbook. [10]

	The set of all cluster points of \mathbb{N} in \mathbb{R}_d is (a) \mathbb{N} (b) \mathbb{Z} (c) \mathbb{R} (d) ϕ	
	The set of all cluster points of $A = \{1, \frac{1}{3}, \frac{1}{9}, \dots, \frac{1}{3^n}, \dots\}$ in \mathbb{R}^1 is	
	(a) N (b) A (c) $A \cup \{0\}$ (d) $\{0\}$	
(3)	Let A and B be subsets of a metric space M , then which of the following is true?	
	(a) $\overline{A} \subset \overline{B} \Rightarrow A \subset B$ (b) $\overline{A} \subset B \Rightarrow A \subset B$ (c) $A \subset \overline{B} \Rightarrow A \subset B$ (d) $A \subset B \Rightarrow \overline{A} = \overline{B}$	
(4)	Consider $M = [0, 3]$ with discrete metric. Then $B[2; 2] = \dots$	
(4)	(a) $(0, 4)$ (b) \mathbb{R} (c) $\{2\}$ (d) $[0, 4]$.	
(5)	If $E = [0, 5] \cup (4, 7) \subset \mathbb{R}^1$, then \overline{E} ?	
	(a) E (b) $[0, 7]$ (c) $[4, 7]$ (d) $[4, 5]$	
(6)	Which of the following subset of \mathbb{R}_d is totally bounded? (a) [1, 5] (b) [2, 8) (c) $\{1, 2,, 5^{11}\}$ (d) \mathbb{N}	
(-)	(a) $[1, 5]$ (b) $(2, 8)$ (c) $\{1, 2,, 5^{11}\}$ (d) \mathbb{N} Let $A = [0, 3] \subset \mathbb{R}^1$. Which of the following subset of A is not an open subset of A ?	
(7)	(a) $[0, 2)$ (b) $[0, 2]$ (c) $(1, 2)$ (d) $[0, 3]$	
(8)	Which of the following subset of \mathbb{R}^1 is complete?	
	(a) \mathbb{Q} (b) $\{1, 2,, 99\}$ (c) $(0, 10]$ (d) $[-5, 1]$	
(9)	Let Λ be any subset of \mathbb{R}_d , then which of the following is true?	
-	(a) A is connected(b) A is compact(c) A is bounded(d) A is totally bounded.	
(10)	For $[0,2] \subset \mathbb{R}^1$, let $f:[0,2] \to \mathbb{R}^1$ be a continuous function. Then which of the following is not	
(,	true?	
	(a) R_f is connected (b) R_f is compact	
	(c) f is uniformly continuous (d) none of these	[20]
Q.2	Attempt any Ten: Let $\rho: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by $\rho(x,y) = x-y $. Then show that ρ is a metric on \mathbb{R} .	[]
	Define: (i) Convergence of sequence (ii) Cauchy sequence.	
(2)	If $\{x_n\}$ is a convergent sequence in \mathbb{R}_d , then show that there exist a positive integer N such that	
(0)	$x_N = x_{N+1} = x_{N+2} = \dots$	
(4)	Prove that every subset of \mathbb{R}_d is closed.	
(5)	Is the union of an infinite number of closed sets is closed? Justify!	
(6)	Let f be a continuous function from a metric space M_1 onto a metric space M_2 . If M_1 is connected,	
(- -	then M_2 is also connected.	
(7,) Define: (i) Totally bounded set (ii) Complete metric Space.) If (M, ρ) is a complete metric space and A is closed subset of M, Then prove that (A, ρ) is also	
(8)	complete.	
. (9) Prove that a $fin_i + e$ subset A of \mathbb{R}^1 is totally bounded.	
	Define: (i) Compact metric space (ii) Finite intersection property.	

1

(11) Show that $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = x is uniformly continuous. (12) Prove that every finite subset of any metric space is compact.

CPTO)

Q.3

- (a) Let (M, ρ) be a metric space. If $\{s_n\}_{n=1}^{\infty}$ is a convergent sequence of points of M, then $\{s_n\}_{n=1}^{\infty}$ is [5] Cauchy. Is converse true? Justify!
- (b) Let (M, ρ) be a metric space and $a \in M$. Let f and g be real valued functions whose domains are subsets of M. If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = N$, then show that $\lim_{x\to a} [f(x)g(x)] = LN$.

OR

Q.3

- (c) Define: Metric space. Let (M,d) be a metric space and let $d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$. Then show that [5] d_1 is a metric on M.
- (d) Define: Equivalent metrics. If ρ and σ are metrics for M and if there exists k>1 such that [5] $\frac{1}{k} \sigma(x,y) \leq \rho(x,y) \leq k \ \sigma(x,y), \ \forall \ x,y \in M \ \text{then prove that} \ \rho \ \text{and} \ \sigma \ \text{are equivalent}.$

Q.4

- (a) Let M be a metric space. Then M is connected iff every continuous characteristic function on M [5] is constant.
- (b) Let (M, ρ) be a metric space and let A be a proper subset of M. Then the subset G_A of A is an open subset of (A, ρ) iff there exist an open subset G_M of (M, ρ) such that $G_A = A \cap G_M$.

OR.

Q.4

- (c) Every open subset G of \mathbb{R}^1 can be written $G = \bigcup I_n$, where I_1, I_2, I_3, \ldots are a finite number or a [5] countable number of open intervals which are mutually disjoint (i.e. $I_m \cap I_n = \phi$ if $m \neq n$)
- (d) Let (M_1, ρ_1) and (M_2, ρ_2) be metric spaces and let $f: M_1 \to M_2$. Then f is continuous on M_1 if [5] and only if $f^{-1}(F)$ is closed subset of M_1 whenever F is a closed subset of M_2 .

0.5

- (a) The subset A of the metric space (M, ρ) is totally bounded iff for every $\epsilon > 0$, A contains a finite [5] subset $\{x_1, x_2, \dots, x_n\}$ which is ϵ -dense in A.
- (b) State and prove Picard's fixed point theorem.

[5]

OR

0.5

(c) State and prove generalized nested interval theorem.

[5]

(d) Let (M, ρ) be a metric space. The subset A of M is totally bounded iff every sequence of points of [5] A contains a Cauchy subsequence.

Q.6

- (a) Let $(M_1\rho_1)$ be a compact metric space. If f is continuous function from M_1 into a metric space [5] (M_2, ρ_2) , then f is uniformly continuous on M_1 .
- (b) The metric space M is compact iff whenever \mathcal{F} is a family of closed subsets of M with the finite [5] intersection property, then $\bigcap_{F \in \mathcal{F}} F \neq \phi$.

OR

Q.6

(c) If M is a compact metric space, then prove that M has the Heine-Borel property.

[6]

(d) If the real valued function f is continuous on the compact metric space M, then f attains a maximum value at some point of M. Also, f attains a minimum value at some point of M.

