SARDAR PATEL UNIVERSITY

B.Sc. EXAMINATION

(Semester- 5) Monday, 11th November 2019

10:00 a.m. to 01:00 p.m.

Subject: PHYSICS Course: US05CPHY01

Title: Classical Mechanics

			Total Marks: 70
N.B:	(i) All th	he symbol have their usual meanings	
		res at the right side of questions indicate full marks	
Q-1	Multi	ple Choice Questions (Attempt All)	(10)
	(1)	The field intensity of a dipole varies as	
	()	(a) r^2 (b) $1/r^3$	
		(c) $1/r^2$ (d) $1/r$	•
	(2)	The electrostatic force between two like charges at	re
		(a) zero (b) attractive	
		(c) repulsive (d) infinity	
	(3)	The value of the permittivity of the vacuum ϵ_0 is _	
	()	(a) $8.1 \times 10^{12} \text{coul/Nm}^2$ (b) $8.1 \times 10^{12} \text{ coul/Nm}^2$	coul²/Nm²
		(a) $8.1 \times 10^{12} \text{coul/Nm}^2$ (b) $8.1 \times 10^{12} \text{ (c)}$ $8.9 \times 10^{12} \text{ coul}^2/\text{Nm}^2$ (d) 8.9×10^{-12}	coul ² /Nm ²
	(4)	The Lagrangian equations of motion are	order
	()	differential equations	
		(a) first (b) second	
		(c) forth (d) zero	
	(5)	constraints are time dependent	
	` ,	(a) Holonomic (b) Non-Holo	onomic
		(c) Rheonomous (d) Scleronom	nous
	(6)	The Hamiltonian function is define by	
	•	(a) $H = F + V$ (b) $H = T -$	V_{\perp}
		(c) $H = F - V$ (d) $H = T + V$	V
	(7)	The term $\vec{\omega} \times (\vec{\omega} \times \vec{r})$ is called	
٠		(a) linear acceleration (b) angular a	cceleration
		(c) centripetal acceleration (d) coriolis a	cceleration
	(8)	If $I_1 = I_2$ and $I_3 = 0$, then the body is called	
		(a) asymmetrical top (b) rotator	•
		(c) symmetrical top (d) spherical	
	(9)	The shortest distance between two points in a pla	ne is
		(a) straight line (b) hyperbol	ic
		(c) circular (d) parabolic	?
	(10)	The equation of constraints for a simple pendulun	n is
		(a) $r d\theta + l = 0$ (b) $r - l = 0$	
		(c) $r d\theta - l = 0$ (d) $r + l = 0$	
Q-2	Shor	t Questions (Attempt any Ten)	(20)
	(1)	State the inverse square law force	•
	(2)	State the Kepler's second law of planetary motion	
	(3)	Define parabolic orbit	
	(4)	What is degree of freedom?	
	(5)	State the D'Alembert's principle in words	COTA
.)			(PTO)
			Page 1 of 2

	(6) (7) (8) (9) (10)	Construct the Lagrangian for Spherical pendulum State the Chasles' theorem Define symmetrical top and rigid rotator What you mean by torque free motion Define geodesic line	
	(11) (12)	State the Hamilton's principle State the variational principle	
Q-3		Explain the laws of gravitational and electromagnetic forces and show that electromagnetic forces are much stronger than the gravitational forces in the interaction of atomic and subatomic particles	
Q-3		OR Derive the equation of motion of equivalent one body and explain () why apple falls toward the earth and not the earth towards the apple?	
Q-4	(a)	What are constraints? Explain, giving examples	(3)
	(b)	Derive the Lagrange's equation of motion for a conservative system from D'Alembert's principle OR	(7)
Q-4	(a)	Discuss the concept of generalized coordinates with illustrations	(3)
	(b)	What is cyclic coordinates? Show that total energy is conserved	(7)
Q-5	(a)	Explain the coordinates with relative translational motion	(5)
	(b)	Write note on Coriolis force OR	(5)
Q-5	(a)	Derive the expression of angular momentum for rigid body	(5)
	(b)	State and prove Euler's theorem	(5)
Q-6	(a)	Derive the Euler's equation using variational principle	(5)
	(b)	Discuss the shortest time problem for a motion of a particle in a constant conservative force field OR	(5)
Q-6	(a)	Derive the Hamilton's principle from Newton's equation	(5)
	(b)	Find the acceleration for a cylinder rolling on inclined plane using undetermined multiplier	(5)

