SARDAR PATEL UNIVERSITY

BSc Sem V Examination

Mathematics

US05CMTH06-Mechanics-I

Dat	te: 22-11-19, Forday			Time: 10:00 TO 01:00 P.M.
Q.	1 Answer the following by selecting correct	choice	e from the options.	
1.	The resultant of two force is minimum, ther	n angle	e between them is _	
	A. 0°	В.		
	$C = \frac{\pi}{2}$	D.		
•	<u> </u>	٥.	4	
Z.	is not a vector quantity.		F	
	A. Velocity		Force	
_	C. Speed	D.	Acceleration	
3.	1 mile =km			
	A. 16.2		1.62	
	C. 1.26		1.6	
4.	The point of concurrence of the altitudes of			<u></u>
	A. Orthocentre	В.	Circumcentre	
	C. Incentre		Centroid	
5.	If particle is in equilibrium then the sum of	the m	oments about a line	of all external
	forces is			
	A. 1	В.	2	
	C. 0	D.	-1	
6.	The mass centre of the area in the first qua	drant	of the curve $x^2 + y$	$a^2 = a^2$.
	$E. \left(\frac{4a}{3\pi}, \frac{4a}{3\pi}\right)$		$\left(\frac{3a}{4\pi}, \frac{3a}{4\pi}\right)$	
	(6)(; · · · · · · · ·	
	G. $\left(\frac{4a}{\pi}, \frac{4a}{\pi}\right)$	Н.	$\left(\frac{4a}{3\pi}, \frac{a}{3\pi}\right)$	
7.	$1 hp = \underline{\qquad}$		(0,0	
	A. $550 g cm^2 sec^{-2}$	В.	550 ft lb wt sec	1
	C. 550 $lb \ wt \ sec^{-1}$		550 ft lb wt sec	
8.	Work done is $\delta w =$			
	A. FcosθδS	B.	FδS	
	C. FsinθδS		FS	
۵	$\sqrt{\dot{x}^2 + \dot{y}^2} = \underline{\hspace{1cm}}$			
9.		n		
	A. a		v /=-	
	C. \sqrt{a}	4 4 4 4	\sqrt{v}	
10	Radial component of velocity of a particle			-
	A. <i>ὑ</i>		r .	
	C. <i>τ</i> θ	D,	ır 0	

Q. 2 Answer any TEN.

(20)

- 1) Define (i) Rigid body (ii) Frame of reference.
- 2) State Fundamental laws of Newtonian Mechanics.
- 3) Explain addition of vectors by parallelogram.
- 4) Define moment and discuss its geometric interpretation.
- 5) Three forces acting at a point are in equilibrium. If $|\bar{P}| = |\bar{Q}| = |\bar{R}|$ then find the angle between two forces.
- 6) Define equipollent system of forces.
- 7) In usual notations prove that $M = \pm pa$.
- 8) Define conservative system.
- 9) Define the work done.
- 10) A particle moves in a plane with constant speed. Prove that it's acceleration is perpendicular to the velocity.
- 11) Explain the term Hodograph.
- 12) In usual notations prove that $S = c \sinh \frac{x}{c}$.
- Q. 3 (a) Explain gradient vector. Find the component of gradient of V along coordinate axis. (5)
 - (b) A particle moves on a straight line under a retardation v^{m+1} , where v is the velocity

At time
$$t$$
, show that $ks = \frac{1}{m-1} \left[\frac{1}{v^{m-1}} - \frac{1}{u^{m-1}} \right]$ and $kt = \frac{1}{m} \left[\frac{1}{v^m} - \frac{1}{u^m} \right]$ where u is the initial velocity. (5)

OR

Q.3 (c) If
$$V = x^2 + y^2 + z^2 + xy + x$$
, at what point in the space $grade\ V$ is parallel to Z -axis? (5)

- (d) Forces of magnitudes 3, 4 and 5 *lbwt*. act at a point in the direction parallel to the sides of equilateral triangle taken in order. Find their resultant force. (5)
- Q.4 (a) State and prove Lamy's theorem. (5)
 - (b) If O is the orthocenter of $\triangle ABC$. Forces \overline{P} , \overline{Q} and \overline{R} are acting along \overline{OA} , \overline{OB} and \overline{OC} are in equilibrium. If BC = a, CA = b, AB = c then show that

$$\frac{P}{a^2(b^2+c^2-a^2)} = \frac{Q}{b^2(a^2+c^2-b^2)} = \frac{R}{c^2(b^2+c^2-a^2)}$$
 (5)

Q. 4(c) State and prove theorem of triangle of forces.	(5)			
(d) Three forces $ar P$, $ar Q$ and $ar R$ acting at a point are in equilibrium and angle between $ar P$ and $ar C$	$ar{Q}$			
is double of the angle between \bar{P}_r , and \bar{R}_r . Prove that $R^2=Q(Q-P)$.	(5)			
Q. 5 (a) State and prove principle of virtual work.				
(b) In usual notations prove that $\delta x = \delta a - (y - b)\delta \theta$ and $\delta y = \delta b + (x - a)\delta \theta$.	(5)			
OR				
Q. 5 (c) Find the mass center of the area in the first quadrant bounded by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	(5)			
(d) State and prove Pappu's theorem for a plane curve.	(5)			
 (d) Three forces \$\vec{P}\$, \$\vec{Q}\$ and \$\vec{R}\$ acting at a point are in equilibrium and angle between \$\vec{P}\$ and \$\vec{q}\$ is double of the angle between \$\vec{P}\$, and \$\vec{R}\$. Prove that \$R^2 = Q(Q - P)\$. Q. 5 (a) State and prove principle of virtual work. (b) In usual notations prove that \$\delta x = \delta a - (y - b) \delta \theta\$ and \$\delta y = \delta b + (x - a) \delta \theta\$. OR Q. 5 (c) Find the mass center of the area in the first quadrant bounded by \$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\$. 				
OR				
Q.6 (c) In usual notations, prove that $T=T_0e^{\mu\theta}$, where T_0 is constant and μ is the coefficient				
of friction	(5)			
(d) Obtain tangential and normal component of velocity and acceleration of a particle	·			
moving in a plane,	(5)			

•

A the Militage of the Control of the