Seat No :___

No of printed pages: 3

SARDAR PATEL UNIVERSITY B.Sc.(SEMESTER - V) EXAMINATION Wednesday , 20th Nov.,2019 MATHEMATICS : US05CMTH05 (NUMBER THEORY)

(NUMBER THEORY)	Maximum Marks: 70
Time: 10:00 a.m. to 01:00 p.m.	10
Que.1 Fill in the blanks.	
(1) If b/a then $(a, b) = \dots \forall a, b \in \mathbb{Z}$.	
(a) a (b) $ a $ (c) $ b $ (d) b	
$(2) (a, 0) = \dots, \forall a \in \mathbb{Z}$	
(a) $-a$ (b) $ a $ (c) a (d) 0	•
(3) If n is odd integer then $3^n + 1$ is divisible by	
(a) 5 (b) 3 (c) 4 (d) 6	
(4) $P(10) = \dots$	
(a) 100 (b) 80 (c) 18 (d) 10	
$(5) S(60) = \dots$	
(a) 61 (b) 60 (c) 12 (d) 168	
(6) is Fermat's number.	
(a) 4 (b) 6 (c) 17 (d) 15	
(7) $ax + by = c$ has integer solution if and only if	
(a) $(a, b) = a$ (b) $(a, b) = b$ (c) $(a, b)/c$ (d)	c/(a,b)
(8) Prove that every number containing more than three digits can formed by digits can be divided by 8.	be divided by 8 iff the number
	rst three
$(9) \phi(m) \leq \dots , \forall m > 1.$	
(a) $m-1$ (b) m (c) $m+1$ (d) $m-2$	
(10) If a is any integer and p is prime then $a^p \equiv \dots \pmod{p}$.	

5

- (1) If $\exists x, y \in \mathbb{Z}$ such that xa + yb = 1 then prove that (a, b) = 1.
- (2) Prove that (a, b) = d iff the following conditions are satisfied: (i) d/a, d/b (ii) whenever c/a and c/b then c/d.
- (3) Prove that [a, b, c] = [[a, b], c].
- (4) If $a=p_1^{a_1}p_2^{a_2}p_3^{a_3}...p_k^{a_k}$, where all p_i are primes and $a_i>0$, then prove that $T(a)=\prod_{i=1}^{\kappa}(a_i+1)$.
- (5) Prove that $\sum_{i=1}^{n} u_i^2 = u_n u_{n+1}$.
- (6) If m = qn + r then prove that $(u_m, u_n) = (u_n, u_r)$.
- (7) If $a_1 \equiv b_1 \pmod{n}$ and $a_2 \equiv b_2 \pmod{n}$, then prove that $a_1 a_2 \equiv b_1 b_2 \pmod{n}$.
- (8) If $ca \equiv cb \pmod{n}$ and (c, n) = 1 then prove that $a \equiv b \pmod{n}$.
- (9) Is 765432 divided by 4 or 7? Verify it .
- (10) Prove that a set of k integers $a_1, a_2, a_3, \ldots, a_k$ is a complete residue system modulo m iff (i) k = m (ii) $a_i \neq a_j \pmod{m}$, $\forall i \neq j$.
- (11) State and prove Fermat's theorem.
- (12) Find $\phi(243) + \phi(81) + \phi(27) + \phi(9) + \phi(3)$.
- Que.3 (a) Let g be a positive integer greater than 1 then prove that every positive integer a can can be written uniquely in the form $a=c_ng^n+c_{n-1}g^{n-1}+\ldots +c_1g+c_0$, where $n\geq 0$, $c_i\in\mathbb{Z}$, $0 \le c_i < g \ , \ c_n \ne 0.$
 - 5 (b) State and prove unique factorization theorem for positive integers. 5

- Que.3 (c) Prove that a,b = ab, $\forall ab > 0$.
 - (d) If m is composite integer and $n_m = 1111...$ (m times) then prove that n_m is also composite
- 5 Que.4 (a) Prove that odd prime factor of $M_p\ (p>2)$ has the form 2pt+1, for some integer t. 5
 - (b) Prove that $S(a) < a\sqrt{a}$, $\forall a > 2$. 5

- Que.4 (c) Prove that odd prime factor of $a^{2^n} + 1(a > 1)$ is of the form $2^{n+1}t + 1$, for some integer t. 6
 - (d) Prove that $u_{n+1}^2 = u_n^2 + 3u_{n-1}^2 + 2[u_{n-2}^2 + u_{n-3}^2 + \dots + u_1]$. 4
- Que.5 (a) Prove that the integer solution of $x^2+2y^2=z^2$, (x , y) = 1 can be expressed as $x=\pm(a^2-2b^2)$, y=2ab , $z=a^2+2b^2$.
 - (b) Find positive integer solution of $y \frac{x+3y}{x+2} = 1$. 4

Que.5	(c) Prove that a general integer solution of $x^2 + y^2 + z^2 = w^2$, $(x, y, z, w) = 1$ is given by $x = (a^2 - b^2 + c^2 - d^2)$, $y = 2ab - 2cd$, $z = 2ad + 2bc$, $w = a^2 + b^2 + c^2 + d^2$.	6
Que.6	(d) Find general solution of $50x + 45y + 60z = 10$.	4
	(a) State and prove Chinese remainder theorem.	5
	(a) State and prove that $(x) = 2 \pmod{3}$; $x \equiv 3 \pmod{5}$; $x \equiv 2 \pmod{7}$.	5
	(b) Solve the system of congruences $x = 2(mod \theta)$, $y = -1$	
	OR	
Que.6	(c) Prove that Euler's function is multiplicative function.	5
	(d) Prove that m is prime iff $\phi(m) + S(m) = mT(m)$.	5
	(d) Prove that m is prime in φ(m), ε(m)	

Principles and the state of the • • Y₁?