1801

SARDAR PATEL UNIVERSITY

B.Sc.SEM-V EXAMINATION 18^{th} November 2019, Monday 10.00 a.m. to 01.00 p.m.

US05CMTH04 (Abstract Algebra-I)

Maximum Marks: 70

- Q.1 Choose the correct option in the following questions, mention the correct [10] option in the answerbook.
 - (1) A nonempty subset H of finite group G is a subgroup of G iff

(a) $a - b \in H$ (b) $a + b \in H$ (c) $(ab)^{-1} \in H$ (d)

(2) In group G, $(aba^{-1})^{-1} = \dots$

 aba^{-1} (b)

- $a^{-1}b^{-1}a$
 - (c)
- (3) Every infinite cyclic group has exactly generators.

(b) 1

(c) 2 (d) 4

(4) In Klein 4-group $G = \{e, a, b, c\}$, $b^2 = ...$

(b) b

(c) c

(5) is generator of group $\{\pm 1, \pm i\}$.

(a) 2 (b) -1 (c) 1

(6) If H is any normal subgroup of G then

(a) Hx=Hy (b) Hx=xH (c) Hx=H (d) xH=yH

(7) Every cyclic group of order 4 is isomorphic to

(a) Klein 4-group

(b) Z

(c) N

(d) Z_4

(8) Order of S_4 is

(a) 3 (b) 12 (c) 24 (d) 4

(9) Every group of orderis abelian group.

(b) 5

(c) 4

- (b) -1 (c) 1 (d) -2
- Q.2 Attempt the short questions. [any ten]

[20]

- (1) Prove that intersection of two subgroups of a group G is also a subgroup of G.
- (2) Find inverse of each element of (Z_7^*,\cdot)
- (3) Prove that identity of group is unique.
- (4) Give an example of finite cyclic group. Verify it.
- (5) State Euler's theorem.
- (6) Find all right cosets of $-3\mathbb{Z}$ in \mathbb{Z} .
- (7) Define order of element in group G. Find $O(\bar{3})$ in Z_6 .
- (8) Let $\theta: G \to G'$ be a homomorphism. Then prove that $Ker\theta$ is a subgroup of G.
- (9) Prove that $\theta: Z \to Z$ defined by $\theta(n) = -n$ is an automorphism of Z.
- (10) Let $G=\{e,a,b,c\}$ be the Klein 4-group, $H=\{e,a\}$, $K=\{e,b\}$. Show that $G = H \times K$.

(11) Prove that product of two permutation need not be commutative. (12) Express the following permutation as a product of disjoint cycles $^{\prime}1\ 2\ 3\ 4\ 5\ 6\ 7\ 8^{\circ}$ 2 3 4 5 7 6 8 1 Q.3(a) Check whether the sets $(Q - \{1\}, *)$, where * is defined as [5] a*b=a+b-ab, $\forall a,b\in Q-\{1\}$ forms a group or not. Verify it. (b) Prove that a non-empty subset H of a group G is subgroup iff [5] $ab^{-1} \in H \ \forall \ a, b \in H.$ OR Q.3(c) Let G be a semigroup. Assume that, for all $a,b \in G$, the equations [5] ax = b and ya = b have unique solutions in G. Then prove that G is a group. (d) Let H and K be subgroups of group G. Then prove that HK is subgroup of [5] G iff HK = KH. Q.4(a) Prove that every subgroup of an infinite cyclic group is also an infinite cyclic [5] (b) Let G be a group and $a, b \in G$ such that ab = ba. If O(a) = n, O(b) = m [5] with m,n relatively prime, then prove that O(ab) = mn. Q.4(c) Let G be a finite cyclic group of order n , then prove that G has $\phi(n)$ generators [5] (d) Let H be any subgroup of group G. Then prove that [5] (i) $aH = H \Leftrightarrow a \in H$ (ii) $aH = bH \Leftrightarrow b^{-1}a \in H$ Q.5(a) Let $G' = \{1, \rho, \rho^2, ..., \rho^{n-1}\}$ be the multiplicative group of n^{th} root of unity, where $\rho = e^{2\pi i/n}$. Then prove that $Z_n \simeq G'$. [5] (b) Let $\theta: G \to G'$ be a homomorphism. Then prove that [5] (i) $Ker\theta$ is a subgroup of G. (ii) $Ker\theta$ is a normal subgroup of G. OR Q.5(c) State and Prove second isomorphism theorem. [5] (d) Prove that a subgroup H is normal in group G iff $xH = Hx \ \forall \ x \in G$. [5] Q.6(a) Let $G = H \times K$ be external direct product of H and K, then prove that $G/K' \simeq H$, where $K' = \{(e_H, k)/k \in K\}$. (b) Prove that the set S_n of all permutation on n symbols forms a non-commutative [5] group. OR人名英格兰 化二磷 医牙线 Q.6(c) State and prove Cayley's theorem. (d) Show that $G = Z_2 \times Z_2$ is the Klein 4-group.